AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Dietary (poly)phenol intake is associated with cardiometabolic health parameters in adolescents

Emily P. Laveriano-Santosa,b,1Sara Castro-Barquerob,c,1Camila Arancibia-RiverosaRuiz-León Ana Maríab,c,dRosa Casasb,cRamón Estruchb,cPatricia Bodegae,fMercedes de Miguele,fAmaya de Cos-Gandoye,fJesús Martínez-GómezfGloria Santos-Beneite,gJuan M. Fernández-AlvirafRodrigo Fernández-Jiménezf,h,iRosa M. Lamuela-Raventósa,b( )Anna Tresserra-Rimbaua,b( )
Department de Nutrició, Ciències de l’Alimentació I Gastronomia, XIA, Facultat de Farmàcia i Ciències de l’alimentació, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona 08028, Spain
Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos Ⅲ (ISCⅢ), Madrid 28029, Spain
Department of Internal Medicine, Hospital Clínic, Institutd’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain
Mediterranean Diet Foundation, Barcelona 08021, Spain
Foundation for Science, Health and Education (SHE), Barcelona 08008, Spain
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA
CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
Hospital Universitario Clínico San Carlos, Madrid 28040, Spain

1 Equally author contribution.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• The highest intake of dietary polyphenols in adolescents was associated with better cardiometabolic parameters.

• Adolescents with a daily intake of 400–600 mg flavanols or flavan-3-ols had a lower waist circumference and blood glucose levels, and higher HDL cholesterol).

• Daily phenolic acid intake of more than 124.7 mg was associated with a lower waist circumference and triglycerides in adolescents compared to the lowest intake (less than 60.9 mg/day).

• Daily stilbene intake of more than 0.30 mg was associated with lower blood glucose and triglyceride levels, and higher HDL cholesterol in adolescents compared to the lowest intake (less than 0.03 mg/day)

Abstract

The protective role of (poly)phenols against metabolic disorders has been extensively studied in adults but not in adolescents. To assess associations of dietary (poly)phenols and their subclasses with cardiometabolic health parameters in adolescents. A cross-sectional study was conducted in 944 individuals aged 11–14 years enrolled in the SI! Program for Secondary Schools trial (NCT03504059). (Poly)phenol intake was assessed using semi-quantitative food frequency questionnaires and the Phenol-Explorer database. The measured cardiometabolic parameters were waist circumference (WC) age-sex Z-score, blood pressure (BP) age-sex Z-score, blood glucose (BG), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-c). Multilevel mixed-effect linear regression models were applied to examine the association between (poly)phenol quintiles and cardiometabolic health parameters. Compared to the lowest quintile, adolescents in the highest quintile of total (poly)phenol intake had lower WC Z-scores, mean arterial pressure Z-scores, and HDL-c after multivariable adjustment. The WC Z-scores and HDL-c were lower in the highest quintile of flavonoid intake compared to the lowest quintile. The highest quintile of phenolic acid intake was associated with a lower WC Z-score and TG levels, and the highest quintile of stilbene intake with lower BG and TG, and with higher HDL-c compared to the lowest quintile. A higher intake of (poly)phenols, especially flavonoids, phenolic acids, and stilbenes, was associated with better cardiometabolic parameters in adolescents.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3381_ESM.docx (41.1 KB)

References

[1]

J. Steinberger, S.R. Daniels, N. Hagberg, et al., Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American heart association, Circulation 134(2016) e236-e255. https://doi.org/10.1161/CIR.0000000000000441.

[2]

J.A. Morrison, L.A. Friedman, P. Wang, et al., Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later, J. Pediatr. 152(2008) 201-206. https://doi.org/10.1016/j.jpeds.2007.09.010.

[3]

K.J. Penczynski, C. Herder, D. Krupp, et al., Flavonoid intake from fruit and vegetables during adolescence is prospectively associated with a favourable risk factor profile for type 2 diabetes in early adulthood, Eur. J. Nutr. 58(2019) 1159-1172. https://doi.org/10.1007/s00394-018-1631-3.

[4]

A. Tresserra-Rimbau, E.B. Rimm, A. Medina-Remón, et al., Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study, Nutr. Metab. Cardiovas. 24(2014) 639-647. https://doi.org/10.1016/j.numecd.2013.12.014.

[5]

S. Castro-Barquero, A. Tresserra-Rimbau, F. Vitelli-Storelli, et al., Dietary polyphenol intake is associated with HDL-cholesterol and a better profile of other components of the metabolic syndrome: A PREDIMED-Plus sub-study, Nutrients 12(2020) 689. https://doi.org/10.3390/nu12030689.

[6]

N. Kardum, M. Glibetic, Polyphenols and their interactions with other dietary compounds: implications for human health, Adv. Food Nutr. Res. 84(2018) 103-144. https://doi.org/10.1016/bs.afnr.2017.12.001.

[7]

A. Tresserra-Rimbau, A. Medina-Remón, J. Pérez-Jiménez, et al., Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study, Nutr. Metab. Cardiovas. 23(2013) 953-959. https://doi.org/10.1016/j.numecd.2012.10.008.

[8]

K.M. Crowe-White, L.W. Evans, G.G.C. Kuhnle, et al., Flavan-3-ols and cardiometabolic health: a guideline recommendation by the academy of nutrition and dietetics, Adv. Nutr. 10(2022) S308-S319. https://doi.org/10.1093/advances/nmac105.

[9]

R.W. Wisnuwardani, S. de Henauw, O. Androutsos, et al., Estimated dietary intake of polyphenols in European adolescents: the HELENA study, Eur. J. Nutr. 58(2019) 2345-2363. https://doi.org/10.1007/s00394-018-1787-x.

[10]

R.W. Wisnuwardani, S. de Henauw, M. Forsner, et al., Polyphenol intake and metabolic syndrome risk in European adolescents: the HELENA study, Eur. J. Nutr. 59(2020) 801-812. https://doi.org/10.1007/s00394-019-01946-1.

[11]

S.L. Ramírez-Garza, E.P. Laveriano-Santos, C. Arancibia-Riveros, et al., Urinary nitric oxide levels are associated with blood pressure, fruit and vegetable intake and total polyphenol excretion in adolescents from the SI! Program, Antioxidants 11(2022) 2140. https://doi.org/10.3390/antiox11112140.

[12]

E.P. Laveriano-Santos, C. Arancibia-Riveros, I. Parilli-Moser, et al., Total urinary polyphenols and ideal cardiovascular health metrics in Spanish adolescents enrolled in the SI Program: a cross-sectional study, Sci. Rep. 12(2022). https://doi.org/10.1038/S41598-022-19684-6.

[13]

E.P. Laveriano-Santos, C. Arancibia-Riveros, A. Tresserra-Rimbau, et al., Flavonoid intake from cocoa-based products and adiposity parameters in adolescents in Spain, Front. Nutr. 9(2022). https://doi.org/10.3389/FNUT.2022.931171.

[14]

E.P. Laveriano-Santos, P. Quifer-Rada, M. Marhuenda-Muñoz, et al., Microbial phenolic metabolites in urine are inversely linked to certain features of metabolic syndrome in Spanish adolescents, Antioxidants 11(2022) 2191. https://doi.org/10.3390/antiox11112191.

[15]

E.P. Laveriano-Santos, I. Parilli-Moser, S.L. Ramírez-Garza, et al., Polyphenols in urine and cardiovascular risk factors: a cross-sectional analysis reveals gender differences in spanish adolescents from the SI! program, Antioxidants 9(2020) 910. https://doi.org/10.3390/antiox9100910.

[16]

R.W. Wisnuwardani, S. de Henauw, L. Béghin, et al., Changes in (poly) phenols intake and metabolic syndrome risk over ten years from adolescence to adulthood, Nutr. Metab. Cardiovas. Dis. 32(2022) 1830-1840. https://doi.org/10.1016/j.numecd.2022.04.015.

[17]

R. Fernandez-Jimenez, G. Santos-Beneit, A. Tresserra-Rimbau, et al., Rationale and design of the school-based SI! Program to face obesity and promote health among Spanish adolescents: a cluster-randomized controlled trial, Am. Heart J. 215(2019) 27-40. https://doi.org/10.1016/j.ahj.2019.03.014.

[18]

W.C. Willett, G.R. Howe, L.H. Kushi, Adjustment for total energy intake in epidemiologic studies, Am. J. Clin. Nutr. 65(1997) 1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S.

[19]

C. Juton, S. Castro-Barquero, R. Casas, et al., Reliability and concurrent and construct validity of a food frequency questionnaire for pregnant women at high risk to develop fetal growth restriction, Nutrients 13(2021) 1629. https://doi.org/10.3390/nu13051629.

[20]

P. Zimmet, G. Alberti, F. Kaufman, et al., The metabolic syndrome in children and adolescents, The Lancet 369(2007) 2059-2061. https://doi.org/10.1016/S0140-6736(07)60958-1.

[21]

A.K. Sharma, D.L. Metzger, C. Daymont, et al., LMS tables for waist-circumference and waist-height ratio Z-scores in children aged 5–19 y in NHANES Ⅲ: association with cardio-metabolic risks, Pediatr. Res. 78(2015) 723-729. https://doi.org/10.1038/pr.2015.160.

[22]

C.L. Ogden, R.J. Kuczmarski, K.M. Flegal, et al., Centers for disease control and prevention 2000 growth charts for the united states: improvements to the 1977 national center for health statistics version, Pediatrics 109(2002) 45-60. https://doi.org/10.1542/peds.109.1.45.

[23]
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents, The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents., Pediatrics 114(2004) 555-576. http://www.ncbi.nlm.nih.gov/pubmed/15286277(accessed June 18, 2022).
[24]

D.G. Rowland, H.P. Gutgesell, Use of mean arterial pressure for noninvasive determination of left ventricular end-systolic wall stress in infants and children, Am. J. Cardiol. 74(1994) 98-99. https://doi.org/10.1016/0002-9149(94)90503-7.

[25]

S.S. Franklin, V.A. Lopez, N.D. Wong, et al., Single versus combined blood pressure components and risk for cardiovascular disease, Circulation 119(2009) 243-250. https://doi.org/10.1161/CIRCULATIONAHA.108.797936.

[26]
O. Moreiras, H. Carvajal, L. Cabrera, et al., Tablas de composición de alimentos, 2019.
[27]
J. Mataix, L. García, M. Mañas, et al., Tabla de composición de alimentos, Granada, 2003.
[28]
UNESCO, International Standard Classification of Education (ISCED) 2011, UNESCO Institute for Statistics, 2012. DOI: 10.15220/978-92-9189-123-8-en.
[29]
INE: Instituto Nacional de Estadística, Encuesta anual de estructura salarial. https://www.ine.es/jaxiT3/Datos.htm?t=9948(accessed June 19, 2022).
[30]

J.L. Chandler, K. Brazendale, M.W. Beets, et al., Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children, Pediatr. Obes. 11(2016) 120-127. https://doi.org/10.1111/ijpo.12033.

[31]

N. Barbosa, C.E. Sanchez, J.A. Vera, et al., A physical activity questionnaire: reproducibility and validity, J. Sports Sci. Med. 6(2007) 505-518.

[32]

J.M. Tanner, R.H. Whitehouse, Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty, Arch. Dis. Child 51(1976) 170-179. https://doi.org/10.1136/adc.51.3.170.

[33]

J.A. Rothwell, J. Perez-Jimenez, V. Neveu, et al., Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content, Database 2013(2013) bat070–bat070. https://doi.org/10.1093/database/bat070.

[34]

N. Ziauddeen, A. Rosi, D. del Rio, et al., Dietary intake of (poly)phenols in children and adults: cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008–2014), Eur. J. Nutr. 58(2019) 3183-3198. https://doi.org/10.1007/s00394-018-1862-3.

[35]

G. Grosso, U. Stepaniak, A. Micek, et al., Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study, Eur. J. Nutr. 56(2017) 1409-1420. https://doi.org/10.1007/s00394-016-1187-z.

[36]

M. Vitale, O. Vaccaro, M. Masulli, et al., Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: the TOSCA. IT study, Clin. Nutr. 36(2017) 1686-1692. https://doi.org/10.1016/j.clnu.2016.11.002.

[37]

K. Liu, M. Luo, S. Wei, The bioprotective effects of polyphenols on metabolic syndrome against oxidative stress: evidences and perspectives, Oxid. Med. Cell Longev. 2019(2019) 1-16. https://doi.org/10.1155/2019/6713194.

[38]

M. Kosmalski, A. Pękala-Wojciechowska, A. Sut, et al., Dietary intake of polyphenols or polyunsaturated fatty acids and its relationship with metabolic and inflammatory state in patients with type 2 diabetes mellitus, Nutrients 14(2022) 1083. https://doi.org/10.3390/nu14051083.

[39]

X. Wang, Y. Qi, H. Zheng, Dietary polyphenol, gut microbiota, and health benefits, Antioxidants 11(2022) 1212. https://doi.org/10.3390/antiox11061212.

[40]

G. Sohrab, S. Hosseinpour-Niazi, J. Hejazi, et al., Dietary polyphenols and metabolic syndrome among Iranian adults, Int. J. Food Sci. Nutr. 64(2013) 661-667. https://doi.org/10.3109/09637486.2013.787397.

[41]

P. Mena, R. Domínguez-Perles, A. Gironés-Vilaplana, et al., Flavan-3-ols, anthocyanins, and inflammation, IUBMB Life 66(2014) 745-758. https://doi.org/10.1002/iub.1332.

[42]

L.M. Cercato, J.P. Oliveira, M.T.S. Souza, et al., Effect of flavonoids in preclinical models of experimental obesity, PharmaNutrition 16(2021) 100260. https://doi.org/10.1016/j.phanu.2021.100260.

[43]

C.L. Cheatham, D.C. Nieman, A.P. Neilson, et al., Enhancing the cognitive effects of flavonoids with physical activity: is there a case for the gut microbiome? Front. Neurosci. 16(2022) 96. https://doi.org/10.3389/FNINS.2022.833202/BIBTEX.

[44]

T. Fujimaki, C. Sato, R. Yamamoto, et al., Isolation of phenolic acids and tannin acids from Mangifera indica L. kernels as inhibitors of lipid accumulation in 3T3-L1 cells, Biosci. Biotechnol. Biochem. 86(2022) 665-671. https://doi.org/10.1093/bbb/zbac030.

[45]

O.B. Ibitoye, T.O. Ajiboye, Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats, Arch. Physiol. Biochem. 124(2018) 410-417. https://doi.org/10.1080/13813455.2017.1415938.

[46]

S. Ramírez-Garza, E. Laveriano-Santos, M. Marhuenda-Muñoz, et al., Health effects of resveratrol: results from human intervention trials, Nutrients 10(2018) 1892. https://doi.org/10.3390/nu10121892.

[47]

Arcila-Agudelo, Ferrer-Svoboda, Torres-Fernàndez, et al., Determinants of adherence to healthy eating patterns in a population of children and adolescents: evidence on the mediterranean diet in the city of Mataró (Catalonia, Spain), Nutrients 11 (2019) 854. https://doi.org/10.3390/nu11040854.

[48]

L. Jones, A. Ness, P. Emmett, Misreporting of energy intake from food records completed by adolescents: associations with sex, body image, nutrient, and food group intake, Front. Nutr. 8(2021) 970. https://doi.org/10.3389/fnut.2021.749007.

[49]

Y. Probst, V. Guan, K. Kent, A systematic review of food composition tools used for determining dietary polyphenol intake in estimated intake studies, Food Chem. 238(2018) 146-152. https://doi.org/10.1016/j.foodchem.2016.11.010.

[50]

E.B. Hill, A.J. Kennedy, K.M. Roberts, et al., Considerations for use of the phenol-explorer database to estimate dietary (poly)phenol intake, J. Acad. Nutr. Diet. 121(2021) 833-834. https://doi.org/10.1016/j.jand.2021.02.010.

Food Science and Human Wellness
Pages 3381-3390
Cite this article:
Laveriano-Santos EP, Castro-Barquero S, Arancibia-Riveros C, et al. Dietary (poly)phenol intake is associated with cardiometabolic health parameters in adolescents. Food Science and Human Wellness, 2024, 13(6): 3381-3390. https://doi.org/10.26599/FSHW.2023.9250023

687

Views

108

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 November 2022
Accepted: 27 January 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return