Highlights
• The difference in BA perception wasn’t obvious when Ssa was higher than 0.5 mg/mL.
• Ssa-mucin complexes reduced interfacial tension and facilitated the release of BA.
• Class A Ssa has a stronger BA than Class B Ssa.
• The difference in BA perception wasn’t obvious when Ssa was higher than 0.5 mg/mL.
• Ssa-mucin complexes reduced interfacial tension and facilitated the release of BA.
• Class A Ssa has a stronger BA than Class B Ssa.
The interaction mechanism between soyasaponin (Ssa) and bitter receptors/mucin, as well as the saliva interface behavior of Ssa, were investigated to explore the presentation mechanism of Ssa bitterness and astringency (BA). Strong bitterness arising from high Ssa concentrations (0.5–1.5 mg/mL) had a masking effect on astringency. At Ssa concentrations of 1.0–1.5 mg/mL, Ssa micelles altered the structure of mucin, exposing its internal tryptophan to a more polar environment. At Ssa concentrations of 0.05–1.50 mg/mL, its reaction with mucin increased the aggregation of particles in artificial saliva, which reduced the frictional lubricating properties of oral saliva. Ssa-mucin interactions affected the salivary interfacial adsorption layer, and their complexes synergistically reduced the interfacial tension. Ssa monomers and soyasapogenols bind to bitter receptors/mucin via hydrogen bonding and hydrophobic interactions. Class A Ssa binds more strongly than class B Ssa, and thus likely presents a higher BA. In conclusion, Ssa interacts with bitter receptors/ mucin causing conformational changes and aggregation of salivary mucin, resulting in diminished frictional lubricating properties of oral saliva. This, in turn, affects taste perception and gustatory transmission.
Q. Cao, Y. Fu, Y. Liu, et al., A targeted and nontargeted metabolomics study on the oral processing of epicatechins from green tea, Food Chem. 378 (2022) 132129. https://doi.org/10.1016/j.foodchem.2022.132129.
J. Derks, R. De Wijk, C. De Graaf, et al., Influence of stimulus properties and sensory task instructions on oral processing behavior of liquid stimuli, J. Texture Stud. 47(1) (2016) 49-57. https://doi.org/10.1111/jtxs.12159.
X. Wang, J. Chen, X. Wang, In situ oral lubrication and smoothness sensory perception influenced by tongue surface roughness, J. Sci. Food Agric. 102(1) (2022) 132-138. https://doi.org/10.1002/jsfa.11339.
N. Singh, S.P. Pydi, J. Upadhyaya, et al., Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs), J. Biol. Chem. 286(41) (2011) 36032-36041. https://doi.org/10.1074/jbc.M111.246983.
M. Behrens, W. Meyerhof, Vertebrate bitter taste receptors: keys for survival in changing environments, J. Agric. Food Chem. 66(10) (2018) 2204-2213. https://doi.org/10.1021/acs.jafc.6b04835.
M. Behrens, F. Ziegler, Structure-function analyses of human bitter taste receptors—where do we stand? Molecules 25(19) (2020) 4423. https://doi.org/10.3390/molecules25194423.
S. Deng, G. Zhang, O. Olayemi Aluko, et al., Bitter and astringent substances in green tea: composition, human perception mechanisms, evaluation methods and factors influencing their formation, Food Res. Int. 157 (2022) 111262. https://doi.org/10.1016/j.foodres.2022.111262.
C. Simões, I. Caeiro, L. Carreira, et al., How different snacks produce a distinct effect in salivary protein composition, Molecules 26(9) (2021) 2403. https://doi.org/10.3390/molecules26092403.
D. Rossetti, G.E. Yakubov, J.R. Stokes, et al., Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology, Food Hydrocoll. 22(6) (2008) 1068-1078. https://doi.org/10.1016/j.foodhyd.2007.05.014.
P. Delime, N. Lemmens-Smink, B. Wolf, Competitive adsorption of lecithin and saliva at the o/w interface in relation to the oral processing of lipid continuous foods, Food Biophys. 9(3) (2014) 285-291. https://doi.org/10.1007/s11483-014-9352-5.
P. Denny, F.K. Hagen, M. Hardt, et al., The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions, J. Prot. Res. 7(5) (2008) 1994-2006. https://doi.org/10.1021/pr700764j.
H.Y. Çelebioğlu, S. Lee, I.S. Chronakis, Interactions of salivary mucins and saliva with food proteins: a review, Crit. Rev. Food Sci. 60(1) (2020) 64-83. https://doi.org/10.1080/10408398.2018.1512950.
Y. He, X. Wang, J. Chen, Current perspectives on food oral processing, Annu. Rev. Food Sci. Tech. 13(1) (2022) 167-192. https://doi.org/10.1146/annurev-food-052720-103054.
G. Wu, R. Mao, Y. Zhang, et al., Study on the interaction mechanism of virgin olive oil polyphenols with mucin and α-amylase, Food Biosci. 47 (2022) 101673. https://doi.org/10.1016/j.fbio.2022.101673.
A.C. Mosca, J. Chen, Food-saliva interactions: mechanisms and implications, Trends Food Sci. Tech. 66 (2017) 125-134. https://doi.org/10.1016/j.tifs.2017.06.005.
M. Ahmad, C. Ritzoulis, R. Bushra, et al., Mapping of β-lactoglobulin − mucin interactions in an in vitro astringency model: phase compatibility, adsorption mechanism and thermodynamic analysis, Food Hydrocoll. 129 (2022) 107640. https://doi.org/10.1016/j.foodhyd.2022.107640.
M. de Jesus, C. Guerreiro, E. Brandão, et al., Study of serial exposures of an astringent green tea flavonoid extract with oral cell-based models, J. Agric. Food Chem. 71(4) (2023) 2070-2081. https://doi.org/10.1021/acs.jafc.2c01918.
G. Zhao, L. Zhu, H. Li, et al., A hierarchical emulsion system stabilized by soyasaponin emulsion droplets, Food Funct. 12(21) (2021) 10571-10580. https://doi.org/10.1039/d1fo01607e.
Y. Pan, Y. Xu, L. Zhu, et al., Stability and rheological properties of water-in-oil (W/O) emulsions prepared with a soyasaponin-PGPR system, Future Foods 4 (2021) 100096. https://doi.org/10.1016/j.fufo.2021.100096.
X. Xia, Q. Lin, N. Zhao, et al., Anti-colon cancer activity of dietary phytochemical soyasaponin i and the induction of metabolic shifts in HCT116, Molecules 27(14) (2022) 4382. https://doi.org/10.3390/molecules27144382.
L. Zhu, M. Zhang, X. Liu, et al., Evaluation of in vitro antioxidant activities of soyasaponins from soy hypocotyls in human HepG2 cell line, Chem. Pap. 71(3) (2017) 653-660. https://doi.org/10.1007/s11696-016-0065-8.
W. Zhou, K.K. Lie, E. Chikwati, et al., Soya saponins and prebiotics alter intestinal functions in Ballan wrasse (Labrus bergylta), Brit. J. Nutr. (2023) 1-46. https://doi.org/10.1017/S000711452200383X.
J. Liu, C. Yang, Q. Zhang, et al., Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading, Food Chem. 207 (2016) 107-114. https://doi.org/10.1016/j.foodchem.2016.03.059.
W. Zhu, H. Luan, Y. Bu, et al., Flavor characteristics of shrimp sauces with different fermentation and storage time, LWT-Food Sic. Technol. 110 (2019) 142-151. https://doi.org/10.1016/j.lwt.2019.04.091.
C. Debjani, S. Das, H. Das, Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food, J. Food Sci. Tech. 50(6) (2013) 1088-1096. https://doi.org/10.1007/s13197-011-0433-x.
Z. Wan, L. Wang, J. Wang, et al., Synergistic foaming and surface properties of a weakly interacting mixture of soy glycinin and biosurfactant stevioside, J. Agric. Food Chem. 62(28) (2014) 6834-6843. https://doi.org/10.1021/jf502027u.
Y. Yang, J. Zhang, Y. Liu, et al., pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins, Food Hydrocoll. 126 (2022) 107476. https://doi.org/10.1016/j.foodhyd.2021.107476.
S. Bhattacharya, J. Haldar, Thermodynamics of micellization of multiheaded single-chain cationic surfactants, Langmuir. 20(19) (2004) 7940-7947. https://doi.org/10.1021/la0495433.
G. Zhao, L. Zhu, P. Yin, et al., Mechanism of interactions between soyasaponins and soybean 7S/11S proteins, Food Chem. 368 (2022) 130857. https://doi.org/10.1016/j.foodchem.2021.130857.
X. Liu, Z. Ling, X. Zhou, et al., Comprehensive spectroscopic probing the interaction and conformation impairment of bovine serum albumin (BSA) by herbicide butachlor, J. Photoch. Photobio. B 162 (2016) 332-339. https://doi.org/10.1016/j.jphotobiol.2016.07.005.
A.G. Hamre, A. Kaupang, C.M. Payne, et al., Thermodynamic signatures of substrate binding for three thermobifida fusca cellulases with different modes of action, Biochemistry 58(12) (2019) 1648-1659. https://doi.org/10.1021/acs.biochem.9b00014.
C. Liu, N. Lv, Y. Song, et al., Interaction mechanism between zein and β-lactoglobulin: insights from multi-spectroscopy and molecular dynamics simulation methods, Food Hydrocoll. 135 (2023) 108226. https://doi.org/10.1016/j.foodhyd.2022.108226.
G. Zhao, S. Wang, Y. Li, et al., Properties and microstructure of pickering emulsion synergistically stabilized by silica particles and soy hull polysaccharides, Food Hydrocoll. 134 (2023) 108084. https://doi.org/10.1016/j.foodhyd.2022.108084.
L. Zhu, Q. Xu, X. Liu, et al., Soy glycinin-soyasaponin mixtures at oil-water interface: Interfacial behavior and O/W emulsion stability, Food Chem. 327 (2020) 127062. https://doi.org/10.1016/j.foodchem.2020.127062.
A.F.H. Ward, L. Tordai, Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects, J. Chem. Phys. 14(7) (1946) 453-461. https://doi.org/10.1063/1.1724167.
W. Acevedo, F. González-Nilo, E. Agosin, Docking and molecular dynamics of steviol glycoside–human bitter receptor interactions, J. Agric. Food Chem. 64(40) (2016) 7585-7596. https://doi.org/10.1021/acs.jafc.6b02840.
W. Jia, C. Di, R. Zhang, et al., Hydrogen bonds and hydrophobicity with mucin and α-amylase induced honey aroma in Feng-flavor Baijiu during 16 years aging, Food Chem. 396 (2022) 133679. https://doi.org/10.1016/j.foodchem.2022.133679.
J. Maldonado-Valderrama, J.M.R. Patino, Interfacial rheology of protein-surfactant mixtures, Curr. Opin. Colloid In. 15(4) (2010) 271-282. https://doi.org/10.1016/j.cocis.2009.12.004.
F. Mohammadi, A.K. Bordbar, A. Divsalar, et al., Interaction of curcumin and diacetylcurcumin with the lipocalin member β-lactoglobulin, Protein J. 28(3) (2009) 117-123. https://doi.org/10.1007/s10930-009-9171-6.
J.R. Lakowicz, Principles of fluorescence spectroscopy (3rd ed.), New York City, USA, Springer Science, 2011.
S. Keller, C. Vargas, H. Zhao, et al., High-precision isothermal titration calorimetry with automated peak-shape analysis, Anal. Chem. 84(11) (2012) 5066-5073. https://doi.org/10.1021/ac3007522.
F.G. Tidemand, A. Zunino, N.T. Johansen, et al., Semi-empirical analysis of complex ITC data from protein–surfactant interactions, Anal. Chem. 93(37) (2021) 12698-12706. https://doi.org/10.1021/acs.analchem.1c02558.
H. Zhou, J.K. Pandya, Y. Tan, et al., Role of mucin in behavior of food-grade TiO2 nanoparticles under simulated oral conditions, J. Agric. Food Chem. 67(20) (2019) 5882-5890. https://doi.org/10.1021/acs.jafc.9b01732.
W.B. Turnbull, A.H. Daranas, On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125(48) (2003) 14859-14866. https://doi.org/10.1021/ja036166s.
O. Boudker, S. Oh, Isothermal titration calorimetry of ion-coupled membrane transporters, Methods 76 (2015) 171-182. https://doi.org/10.1016/j.ymeth.2015.01.012.
Y.A. Albarkah, R.J. Green, V.V. Khutoryanskiy, Probing the mucoadhesive interactions between porcine gastric mucin and some water-soluble polymers, Macromol. Biosci. 15(11) (2015) 1546-1553. https://doi.org/10.1002/mabi.201500158.
N.A. Fefelova, Z.S. Nurkeeva, G.A. Mun, et al., Mucoadhesive interactions of amphiphilic cationic copolymers based on[2-(methacryloyloxy)ethyl] trimethylammonium chloride, Int. J. Pharmaceut. 339(1) (2007) 25-32. https://doi.org/10.1016/j.ijpharm.2007.02.019.
N. Riquelme, R.N. Zúñiga, C. Arancibia, Physical stability of nanoemulsions with emulsifier mixtures: replacement of tween 80 with quillaja saponin, LWT-Food Sci. Technol. 111 (2019) 760-766. https://doi.org/10.1016/j.lwt.2019.05.067.
J.M. Coles, D.P. Chang, S. Zauscher, Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins, Curr. Opin. Colloid In. 15(6) (2010) 406-416. https://doi.org/10.1016/j.cocis.2010.07.002.
S. Wang, H. Zhao, D. Qu, et al., Destruction of hydrogen bonding and electrostatic interaction in soy hull polysaccharide: effect on emulsion stability, Food Hydrocoll. 124 (2022) 107304. https://doi.org/10.1016/j.foodhyd.2021.107304.
S. Prasad Pydi, J. Upadhyaya, N. Singh, et al., Recent advances in structure and function studies on human bitter taste receptors, Curr. Prot. Pep. Sci. 13(6) (2012) 501-508. https://doi.org/10.2174/138920312803582942.
A. Roy, A. Kucukural, Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nat. Protoc. 5(4) (2010) 725-738. https://doi.org/10.1038/nprot.2010.5.
J. Ren, T.M. Vaid, H. Lee, et al., Evaluation of interactions between the hepatitis C virus NS3/4A and sulfonamidobenzamide based molecules using molecular docking, molecular dynamics simulations and binding free energy calculations, J. Comput. Aid. Mol. Des. 37(1) (2023) 53-65. https://doi.org/10.1007/s10822-022-00490-1.
K. Okubo, M. Iijima, Y. Kobayashi, et al., Components responsible for the undesirable taste of soybean seeds, Biosci. Biotech. Bioch. 56(1) (1992) 99-103. https://doi.org/10.1271/bbb.56.99.