AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Protective effects of Bifidobacterium breve on imiquimod-induced psoriasis in mice through secondary bile acid production and FXR-TLR4/NF-κB pathway

Xinqi Chena,bYang Chena,bCatherine Stantonc,d,eR.Paul Rossc,dJianxin Zhaoa,bBo Yanga,b,c( )Wei Chena,b,f
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
Teagasc Food Research Centre, Cork T12 YT20, Ireland
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

Abstract

This study aimed to evaluate the effects of Bifidobacterium breve CCFM683 on psoriasis and to investigate the underlying mechanisms. B. breve CCFM683 significantly ameliorated psoriasis in mice as well as elevated the deoxycholic acid (DCA) and lithocholic acid (LCA) in the colon compared with those of the imiquimod (IMQ)-treated mice. Meanwhile, B. breve CCFM683 increased the relative abundance of DCA-producing Lachnoclostridium and diminished the harmful Desulfovibrio and Prevotellaceae UCG001. Additionally, the farnesoid X receptor (FXR) in the skin was activated and the expression of the Toll-like receptor 4 (TLR4)/ nuclear factor kappa-B (NF-κB) pathway was inhibited, and the downstream interleukin (IL)-17 and tumor necrosis factor (TNF)-α were downregulated whereas IL-10 was up- regulated. Moreover, the subsequent hyperproliferation of keratinocytes and the dysfunction of the epidermal barrier were improved. In conclusion, CCFM683 administration ameliorated IMQ-induced psoriasis via modulating gut microbiota, promoting the DCA production, regulating the FXR -TLR4/NF-κB pathway, diminishing proinflammatory cytokines, and regulating keratinocytes and epidermal barrier. These findings may be conducive to elucidating the mechanism for probiotics to ameliorate psoriasis and to promote its clinical trials in skin disease.

References

[1]

J.E. Greb, A.M. Goldminz, J.T. Elder, et al., Psoriasis, Nat. Rev. Dis. Primers 2 (2016) 16082. https://doi.org/10.1038/nrdp.2016.82.

[2]

L.L. TenBergen, A. Petrovic, A. Krogh Aarebrot, et al., The TNF/IL-23/IL-17 axis-head-to-head trials comparing different biologics in psoriasis treatment, Scand. J. Immunol. 92 (2020) e12946. https://doi.org/10.1111/sji.12946.

[3]

E. Rizova, M. Corroller, Topical calcitriol-studies on local tolerance and systemic safety, Br. J. Dermatol. 144 (2001) 3-10. https://doi.org/10.1046/j.1365-2133.2001.00041.x.

[4]

M. Kamata, Y. Tada, Safety of biologics in psoriasis, J. Dermatol. 45 (2018) 279-286. https://doi.org/10.1111/1346-8138.14096.

[5]

Y. Deng, Z. Fang, S. Cui, et al., Evaluation of probiotics for inhibiting hyperproliferation and inflammation relevant to psoriasis in vitro, J. Funct. Foods 81 (2021) 104433. https://doi.org/10.1016/j.jff.2021.104433.

[6]

H. Chen, C. Wang, B. Tang, et al., Punica granatum peel polysaccharides ameliorate imiquimod-induced psoriasis-like dermatitis in mice via suppression of NF-κB and STAT3 pathways, Front. Pharmacol. 12 (2022) 806844. https://doi.org/10.3389/fphar.2021.806844.

[7]

Y.H. Chen, C.S. Wu, Y.H. Chao, et al., Lactobacillus pentosus GMNL-77 inhibits skin lesions in imiquimod-induced psoriasis-like mice, J. Food Drug Anal. 25 (2017) 559-566. https://doi.org/10.1016/j.jfda.2016.06.003.

[8]

F. Gómez-Chávez, C. Cedillo-Peláez, L.A. Zapi-Colín, et al., The extracellular vesicles from the commensal Staphylococcus epidermidis ATCC12228 strain regulate skin inflammation in the imiquimod-induced psoriasis murine model, Int. J. Mol. Sci. 22 (2022) 13029. https://doi.org/10.3390/ijms222313029.

[9]

H. Guo, M. Li, H. Liu, Selenium-rich yeast peptide fraction ameliorates imiquimod-induced psoriasis-like dermatitis in mice by inhibiting inflammation via MAPK and NF-κB signaling pathways, Int. J. Mol. Sci. 23 (2022) 2112. https://doi.org/10.3390/ijms23042112.

[10]

W. Lu, Y. Deng, Z. Fang, et al., Potential role of probiotics in ameliorating psoriasis by modulating gut microbiota in imiquimod-induced psoriasis-like mice, Nutrients 13 (2021) 2010. https://doi.org/10.3390/nu13062010.

[11]

D. Groeger, L. O’Mahony, E. F. Murphy, et al., Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut, Gut Microbes 4 (2013) 325-339. https://doi.org/10.4161/gmic.25487.

[12]

I.A. Rather, V.K. Bajpai, Y.S. Huh, et al., Probiotic Lactobacillus sakei proBio-65 extract ameliorates the severity of imiquimod induced psoriasis-like skin inflammation in a mouse model, Front. Microbiol. 9 (2018) 1021. https://doi.org/10.3389/fmicb.2018.01021.

[13]

J. Wang, H. Chen, B. Yang, et al., Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice, RSC Adv. 6 (2016) 14457-14464. https://doi.org/10.1039/C5RA24491A.

[14]

B. Yang, H. Chen, H. Gao, et al., Bifidobacterium breve CCFM683 could ameliorate DSS-induced colitis in mice primarily via conjugated linoleic acid production and gut microbiota modulation, J. Funct. Foods 49 (2018) 61-72. https://doi.org/10.1016/j.jff.2018.08.014.

[15]

D.Q. Luo, H.H. Wu, Y.K. Zhao, et al., Original research: different imiquimod creams resulting in differential effects for imiquimod-induced psoriatic mouse models, Exp. Biol. Med. 241 (2016) 1733-1738. https://doi.org/10.1177/1535370216647183.

[16]

Y. Chen, Y. Jin, C. Stanton, et al., Dose-response efficacy and mechanisms of orally administered CLA-producing Bifidobacterium breve CCFM683 on DSS-induced colitis in mice, J. Funct. Foods 75 (2020) 104245. https://doi.org/10.1016/j.jff.2020.104245.

[17]

M. Wang, T. Li, Z. Ouyang, et al., SHP2 allosteric inhibitor TK-453 alleviates psoriasis-like skin inflammation in mice via inhibition of IL-23/Th17 axis, iScience 25 (2022) 104009. https://doi.org/10.1016/j.isci.2022.104009.

[18]

W. Lu, L. Qian, Z. Fang, et al., Probiotic strains alleviated OVA-induced food allergy in mice by regulating the gut microbiota and improving the level of indoleacrylic acid in fecal samples, Food Funct. 13 (2022) 3704-3719. https://doi.org/10.1039/D1FO03520G.

[19]

Y. Chen, B. Yang, R.P. Ross, et al., Orally Administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, inflammatory cytokine and gut microbiota modulation, J. Agric. Food Chem. 67 (2019) 13282-13298. https://doi.org/10.1021/acs.jafc.9b05744.

[20]

J. Chong, P. Liu, G. Zhou, et al., Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data, Nat. Protoc. 15 (2020) 799-821. https://doi.org/10.1038/s41596-019-0264-1.

[21]

W. Guo, Q. Xiang, B. Mao, et al., Protective effects of microbiome-derived inosine on lipopolysaccharide-induced acute liver damage and inflammation in mice via mediating the TLR4/NF-κB pathway, J. Agric. Food Chem. 69 (2021) 7619-7628. https://doi.org/10.1021/acs.jafc.1c01781.

[22]

Z.R. Shi, X.S. Wu, C.Y. Wu, et al., Bile acids improve psoriasiform dermatitis through inhibition of IL-17A expression and CCL20-CCR6-mediated trafficking of T Cells, J. Invest. Dermatol. 142 (2022) 1381. https://doi.org/10.1016/j.jid.2021.10.027.

[23]

S. Itoh, A. Kanazuka, T. Akimoto, Combined treatment with ursodeoxycholic acid and pioglitazone in a patient with NASH associated with type 2 diabetes and psoriasis, Dig. Dis. Sci. 48 (2003) 2182-2186. https://doi.org/10.1023/B:DDAS.0000004523.51779.7c.

[24]

S. Itoh, M. Kono, T. Akimoto, Psoriasis treated with ursodeoxycholic acid: three case reports, Clin. Exp. Dermatol. 32 (2007) 398-400. https://doi.org/10.1111/j.1365-2230.2007.02401.x.

[25]

C. Ogawa, R. Inoue, Y. Yonejima, et al., Supplemental Leuconostoc mesenteroides strain NTM048 attenuates imiquimod-induced psoriasis in mice, J. Appl. Microbiol. 131 (2021) 3043-3055. https://doi.org/10.1111/jam.15161.

[26]

M.R. Mahmud, S. Akter, S.K. Tamanna, et al., Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases, Gut Microbes 14 (2022) 2096995. https://doi.org/10.1080/19490976.2022.2096995.

[27]

J.M. Ridlon, D.J. Kang, P.B. Hylemon, Bile salt biotransformations by human intestinal bacteria, J. Lipid Res. 47 (2006) 241-259. https://doi.org/10.1194/jlr.R500013-JLR200.

[28]

A. Beller, A. Kruglov, P. Durek, et al., Specific microbiota enhances intestinal IgA levels by inducing TGF-β in T follicular helper cells of Peyer’s patches in mice, Eur. J. Immunol. 50 (2020) 783-794. https://doi.org/10.1002/eji.201948474.

[29]

Y.J. Liang, Y.P. Zhang, Y.J. Deng, et al., Chaihu-Shugan-San decoction modulates intestinal microbe dysbiosis and alleviates chronic metabolic inflammation in NAFLD rats via the NLRP3 inflammasome pathway, Evid. Based Complement. Alternat. Med. 2018 (2018) 1-11. https://doi.org/10.1155/2018/9390786.

[30]

E.J.C. Goldstein, D.M. Citron, V.A. Peraino, et al., Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections, J. Clin. Microbiol. 41 (2003) 2752-2754. https://doi.org/10.1128/JCM.41.6.2752-2754.2003.

[31]

Y. Liu, S. Wang, W.K. Dai, et al., Distinct skin microbiota imbalance and responses to clinical treatment in children with atopic dermatitis, Front. Cell. Infect. Microbiol. 10 (2020) 336. https://doi.org/10.1016/j.jff.2019.103663.

[32]

Z. Gao, H. Wu, K. Zhang, et al., Protective effects of grape seed procyanidin extract on intestinal barrier dysfunction induced by a long-term high-fat diet, J. Funct. Foods 64 (2020) 103663. https://doi.org/10.1016/j.jff.2019.103663.

[33]

C. Sun, L. Chen, H. Yang, et al., Involvement of gut microbiota in the development of psoriasis vulgaris, Front. Nutr. 8 (2021) 761978. https://doi.org/10.3389/fnut.2021.761978.

[34]

J. Wang, H. Lu, L. Yu, et al., Aggravation of airway inflammation in RSV-infected asthmatic mice following infection-induced alteration of gut microbiota, Ann. Palliat. Med. 10 (2021) 5084-5097. http://dx.doi.org/10.21037/apm-20-2052.

[35]

L.M. Rehaume, N. Matigian, A.M. Mehdi, et al., IL-23 favours outgrowth of spondyloarthritis-associated pathobionts and suppresses host support for homeostatic microbiota, Ann. Rheum. Dis. 78 (2019) 494-503. http://dx.doi.org/10.1136/annrheumdis-2018-214381.

[36]

Y. Yamamoto, R.B. Gaynor, Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer, J. Clin. Invest. 107 (2001) 135-142. https://doi.org/10.1172/JCI11914.

[37]

H. Feng, X.Y. Li, J.R. Zheng, et al., Inhibition of the nuclear factor-kappa B signaling pathway by leflunomide or triptolide also inhibits the anthralin-induced inflammatory response but does not affect keratinocyte growth inhibition, Biol. Pharm. Bull. 28 (2005) 1597-1602. https://doi.org/10.1248/bpb.28.1597.

[38]

S. Girisa, S. Henamayee, D. Parama, et al., Kunnumakkara, targeting farnesoid X receptor (FXR) for developing novel therapeutics against cancer, Mol. Biomed. 2 (2021) 21. http://dx.doi.org/10.1186/s43556-021-00035-2.

[39]

R.M. Gadaleta, B. Oldenburg, E.C.L. Willemsen, et al., Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-kappa B signaling in the intestine, Biochim. Biophys. Acta Mol. Basis Dis. 1812 (2011) 851-858. https://doi.org/10.1016/j.bbadis.2011.04.005.

[40]

A. Di Cesare, P. Di Meglio, F.O. Nestle, The IL-23/Th17 Axis in the immunopathogenesis of psoriasis, J. Invest. Dermatol. 129 (2009) 1339-1350. https://doi.org/10.1038/jid.2009.59.

[41]

H. Mollazadeh, A.F.G. Cicero, C.N. Blesso, et al., Immune modulation by curcumin: the role of interleukin-10, Crit. Rev. Food Sci. Nutr. 59 (2019) 89-101. https://doi.org/10.1080/10408398.2017.1358139.

[42]

H.L. Chen, Y.B. Zeng, Z.Y. Zhang, et al., Gut and cutaneous microbiome featuring abundance of Lactobacillus reuteri protected against psoriasis-like inflammation in mice, J. Inflammation Res. 14 (2021) 6175-6190. https://doi.org/10.2147/JIR.S337031.

[43]

M. de Groot, D.I. Picavet, M.B.M. Teunissen, et al., Expression of the chemokine receptor CCR5 in psoriasis and results of a randomized placebo-controlled trial with a CCR5 inhibitor, Arch. Dermatol. Res. 299 (2007) 305-313. https://doi.org/10.1007/s00403-007-0764-7.

[44]

M. Thewes, R. Stadler, B. Korge, et al., Normal psoriatic expression of hyperproliferation-associated keratins, Arch. Dermatol. Res. 283 (1991) 465-471. https://doi.org/10.1007/BF00371784.

[45]

A.G. Szöllősi, A. Gueniche, O. Jammayrac, et al., Bifidobacterium longum extract exerts pro-differentiating effects on human epidermal keratinocytes, in vitro, Exp. Dermatol. 26 (2017) 92-94. https://doi.org/10.1111/exd.13130.

[46]

J. Xu, H. Chen, Z. Chu, et al., A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis, J. Nanobiotechnol. 20 (2022) 1-17. https://doi.org/10.1186/s12951-022-01368-y.

[47]

E. Proksch, J.M. Brandner, J.M. Jensen, The skin: an indispensable barrier, Exp. Dermatol. 17 (2008) 273-277. https://doi.org/10.1111/j.1600-0625.2008.00786.x.

[48]

Y.O. Jung, H. Jeong, Y. Cho, et al., Lysates of a Probiotic, Lactobacillus rhamnosus, can improve skin barrier function in a reconstructed human epidermis model, Int. J. Mol. Sci. 20 (2019) 4289. https://doi.org/10.3390/ijms20174289.

[49]

A. Gueniche, A. Valois, D. Kerob, et al., A combination of Vitreoscilla filiformis extract and Vichy volcanic mineralizing water strengthens the skin defenses and skin barrier, J. Eur. Acad. Dermatol. Venereol. 36 (2022) 16-25. https://doi.org/10.1111/jdv.17786.

[50]

S.Y. Kim, J.O. Lee, Y.J. Kim, et al., Effects of oral administration of Lactiplantibacillus plantarum APsulloc 331261 (GTB1TM) isolated from green tea on atopic dermatitis (AD)-like skin lesion mouse models, Evid. Based Complement. Alternat. Med. 2022 (2022) 4520433. https://doi.org/10.1155/2022/4520433.

[51]

B.E. Kim, M.D. Howell, E. Guttman, et al., TNF-α downregulates filaggrin and loricrin through c-Jun N-terminal kinase: role for TNF-α antagonists to improve skin barrier, J. Invest. Dermatol. 131 (2011) 1272-1279. https://doi.org/10.1038/jid.2011.74.

[52]

R.L. Eckert, M.B. Yaffe, J.F. Crish, et al., Involucrin-structure and role in envelope assembly, J. Invest. Dermatol. 100 (1993) 613-617. https://doi.org/10.1111/1523-1747.ep12472288.

Food Science and Human Wellness
Pages 3447-3460
Cite this article:
Chen X, Chen Y, Stanton C, et al. Protective effects of Bifidobacterium breve on imiquimod-induced psoriasis in mice through secondary bile acid production and FXR-TLR4/NF-κB pathway. Food Science and Human Wellness, 2024, 13(6): 3447-3460. https://doi.org/10.26599/FSHW.2023.9250029

531

Views

56

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 December 2022
Revised: 13 March 2023
Accepted: 05 April 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return