AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Nostoc commune Vauch. polysaccharide alleviates Pb-induced hepatorenal toxicity by changing gut bacteriome, mycobiome, and metabolome

Yue Liua,1Ping Rena,1Hailong LiaYingying LiuaYiting YangaWanting WangaJiaming ZhouaLing SucLili Guana,b( )Hongxia Maa,b( )
College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China

Peer review under responsibility of Tsinghua University Press.

1 The authors contributed equally to this work.

Show Author Information

Highlights

• NCVP has an alleviative effect on Pb-induced mice with acute hepatorenal injury.

• NCVP manipulates the imbalance of gut bacteriobiota and mycobiota affected by Pb.

• NCVP regulates Pb-induced gut microbial metabolites and metabolic pathways.

Graphical Abstract

Abstract

This study aimed to explore the protective effect and potential mechanism of Nostoc commune Vauch. polysaccharide (NCVP) on lead (Pb)-poisoning mice. NCVP improved Pb-induced hepatorenal toxicity and inflammatory responses and modulated key indicators of antioxidant capacity. Moreover, the down-regulation of critical proteins of the Nrf2 pathway induced by Pb could be reversed after NCVP intervention. In addition, NCVP maintained the diversity of gut bacteriobiota and restored the relative abundance of f_Prevotellaceae, g_Alloprevotella, and f_Eubacterium_coprostanoligenes_group reduced by Pb. Also, NCVP regulated the diversity and abundance of gut mycobiota affected by Pb. Specifically, Pb decreased the proportion of pathogenic species (g_Fusarium, p_Basidiomycota, g_Alternaria, g_Aspergillus, and g_Candida) while NCVP increased the abundance of probiotics species (g_Kazachstania and p_Ascomycota). Furthermore, the metabolomic analysis found that NCVP significantly altered a range of microbial metabolites, including porphobilinogen, cromakalim, salidroside, and trichostatin A, which has significant associations with specific gut bacteriobiota or mycobiota. These altered metabolites are involved in primary bile acid biosynthesis, metabolism of xenobiotics by cytochrome P450, lysine degradation, and other metabolic pathways. Overall, our findings indicate that NCVP might be an excellent natural product for eliminating Pb-induced hepatorenal toxicity, possibly by regulating gut bacteriome, mycobiome and metabolome.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3482_ESM1.docx (16.4 KB)
fshw-13-6-3482_ESM2.docx (431.6 KB)

References

[1]

K. Amit, K. Amit, M.M.S. Cabral-Pinto, et al., Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches, Int. J. Environ. Res. Public Health 17 (2020) 2179. https://doi.org/10.3390/ijerph17072179.

[2]

S. Tong, Y.E. von Schirnding, T. Prapamontol, Environmental lead exposure: a public health problem of global dimensions, Bull. World Health Organ. 78 (2000) 1068-1077. https://doi.org/10.1146/annurev.publhealth.21.1.659.

[3]

L.H. Mason, M.J. Mathews, D.Y. Han, Neuropsychiatric symptom assessments in toxic exposure, Psychiatr. Clin. North Amer. 36 (2013) 201-208. https://doi.org/10.1016/j.psc.2013.02.001.

[4]

N. Vallverdu-Coll, R. Mateo, F. Mougeot, et al., Immunotoxic effects of lead on birds, Sci. Total Environ. 689 (2019) 505-515. https://doi.org/10.1016/j.scitotenv.2019.06.251.

[5]

C.N. Wang, X.Y. Song, Q. Gao, et al., Dietary exposure to lead by children and adults in the jinhu area of China, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26 (2009) 821-828. https://doi.org/10.1080/02652030802714000.

[6]

S.J. Flora, V. Pachauri, Chelation in metal intoxication, Int. J. Environ. Res. Public Health 7 (2010) 2745-2788. https://doi.org/10.3390/ijerph7072745.

[7]

H.C. Kim, T.W. Jang, H.J. Chae, et al., Evaluation and management of lead exposure, Ann. Occup. Environ. Med. 27 (2015) 30. https://doi.org/10.1186/s40557-015-0085-9.

[8]

H.C. Chuang, R.H. Shie, C.H. Lee, et al., Associations of soluble metals and lung and liver toxicity in mice induced by fine particulate matter originating from a petrochemical complex, Environ. Sci. Pollut. Res. 27 (2020) 34442-34452. https://doi.org/10.1007/s11356-020-09644-w.

[9]

H. Li, S. Liu, Y. Liu, et al., Effects of in vitro digestion and fermentation of Nostoc commune vauch. polysaccharides on properties and gut microbiota, Carbohydr. Polym. 281 (2022) 119055. https://doi.org/10.1016/j.carbpol.2021.119055.

[10]

P. Xu, J. Wang, F. Hong, et al., Melatonin prevents obesity through modulation of gut microbiota in mice, J. Pineal Res. 62 (2017) e12399. https://doi.org/10.1111/jpi.12399.

[11]

J. Xia, C. Jin, Z. Pan, et al., Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice, Sci. Total Environ. 631-632 (2018) 439-448. https://doi.org/10.1016/j.scitotenv.2018.03.053.

[12]

L. Yuan, W. Zhi, Y. Liu, et al., Lead toxicity to the performance, viability, and community composition of activated sludge microorganisms, Environ. Sci. Technol. 49 (2015) 824-830. https://doi.org/10.1021/es504207c.

[13]

B. Gao, L. Chi, R. Mahbub, et al., Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways, Chem. Res. Toxicol. 30 (2017) 996-1005. https://doi.org/10.1021/acs.chemrestox.6b00401.

[14]

Y.S. Huang, S.H. Wang, S.M. Chen, et al., Metabolic profiling of metformin treatment for low-level pb-induced nephrotoxicity in rat urine, Sci. Rep. 8 (2018) 14587. https://doi.org/10.1038/s41598-018-32501-3.

[15]

W. Liu, H. Feng, S. Zheng, et al., Pb toxicity on gut physiology and microbiota, Front. Physiol. 12 (2021) 574913. https://doi.org/10.3389/fphys.2021.574913.

[16]

T.G. Hu, W.L. Zhu, Y.S. Yu, et al., The variation on structure and immunomodulatory activity of polysaccharide during the longan pulp fermentation, Int. J. Biol. Macromol. 222 (2022) 599-609. https://doi.org/10.1016/j.ijbiomac.2022.09.195.

[17]

D. Yuan, C. Li, Q. Huang, et al., Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides, Crit. Rev. Food Sci. Nutr. (2022) 1-21. https://doi.org/10.1080/10408398.2022.2025535.

[18]

J. Wu, S. Shi, H. Wang, et al., Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: a review, Carbohydr. Polym. 144 (2016) 474-494. https://doi.org/10.1016/j.carbpol.2016.02.040.

[19]

C.J. Chang, C.S. Lin, C.C. Lu, et al., Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6 (2015) 7489. https://doi.org/10.1038/ncomms8489.

[20]

H. Yuzhen, S. Mingyue, H. Lixin, et al., Mesona chinensis benth polysaccharides alleviates liver injury by beneficial regulation of gut microbiota in cyclophosphamide-induced mice, Food Sci. Hum. Wellness 11 (2022) 74-84. https://doi.org/10.1016/j.fshw.2021.07.009.

[21]

S. Sun, K. Wang, L. Sun, et al., Therapeutic manipulation of gut microbiota by polysaccharides of wolfiporia cocos reveals the contribution of the gut fungi-induced PGE2 to alcoholic hepatic steatosis, Gut Microbes 12 (2020) 1830693. https://doi.org/10.1080/19490976.2020.1830693.

[22]

Q. Song, Z. Zhu, Using Cordyceps militaris extracellular polysaccharides to prevent Pb2+-induced liver and kidney toxicity by activating Nrf2 signals and modulating gut microbiota, Food Funct. 11 (2020) 9226-9239. https://doi.org/10.1039/d0fo01608j.

[23]

M. Ninomiya, H. Satoh, Y. Yamaguchi, et al., Antioxidative activity and chemical constituents of edible terrestrial alga Nostoc commune Vauch., Biosci. Biotechnol. Biochem. 75 (2011) 2175-2177. https://doi.org/10.1271/bbb.110466.

[24]

S. Guo, S. Shan, X. Jin, et al., Water stress proteins from Nostoc commune Vauch. Exhibit anti-colon cancer activities in vitro and in vivo, J. Agric. Food Chem. 63 (2015) 150-159. https://doi.org/10.1021/jf503208p.

[25]

M. Cai, H. Zhong, C. Li, et al., Application of composite coating of Nostoc commune Vauch. polysaccharides and sodium carboxymethyl cellulose for preservation of salmon fillets, Int. J. Biol. Macromol. 210 (2022) 394-402. https://doi.org/10.1016/j.ijbiomac.2022.05.051.

[26]

Y. Wang, C. Wang, J. Dang, et al., Structural characteristics of polysaccharide microcapsules from Nostoc commune, and their applications in skin wound healing and pathological repair, Biomed. Mater. 16 (2021) 045009. https://doi.org/10.1088/1748-605X/abe978.

[27]

M. Guo, Z. Li, Polysaccharides isolated from Nostoc commune Vaucher inhibit colitis-associated colon tumorigenesis in mice and modulate gut microbiota, Food Funct. 10 (2019) 6873-6881. https://doi.org/10.1039/c9fo00296k.

[28]

M. Guo, G.B. Ding, P. Yang, et al., Migration suppression of small cell lung cancer by polysaccharides from Nostoc commune Vaucher, J. Agric. Food Chem. 64 (2016) 6277-6285. https://doi.org/10.1021/acs.jafc.6b01906.

[29]

M. Guo, G.B. Ding, S. Guo, et al., Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch., Food Funct. 6 (2015) 3035-3044. https://doi.org/10.1039/c5fo00471c.

[30]

O.G. Adebayo, B. Ben-Azu, A.M. Ajayi, et al., Gingko biloba abrogate lead-induced neurodegeneration in mice hippocampus: involvement of nf-kappab expression, myeloperoxidase activity and pro-inflammatory mediators, Biol. Trace Elem. Res. 200 (2022) 1736-1749. https://doi.org/10.1007/s12011-021-02790-3.

[31]

W. Hu, D. Xu, Z. Zhou, et al., Alterations in the gut microbiota and metabolic profiles coincide with intestinal damage in mice with a bloodborne candida albicans infection, Microb. Pathog. 154 (2021) 104826. https://doi.org/10.1016/j.micpath.2021.104826.

[32]

Q. Zhao, M. Huang, J. Yin, et al., Atrazine exposure and recovery alter the intestinal structure, bacterial composition and intestinal metabolites of male pelophylax nigromaculatus, Sci. Total Environ. 818 (2022) 151701. https://doi.org/10.1016/j.scitotenv.2021.151701.

[33]

L. Yange, C. Ronglong, L. Lanzhou, et al., The triterpenoids-enriched extracts from antrodia cinnamomea mycelia attenuate alcohol-induced chronic liver injury via suppression lipid accumulation in C57BL/6 mice, Food Sci. Hum. Wellness 10 (2021) 497-507. https://doi.org/10.1016/j.fshw.2021.04.012.

[34]

M. Agarwal, M. Joshi, M. Gupta, et al., Role of blood urea nitrogen and serum albumin ratio in predicting severity of community acquired pneumonia (CAP), Monaldi Arch. Chest Dis. 92 (2021). https://doi.org/10.4081/monaldi.2021.2091.

[35]

M. Zhang, L. Yang, M. Zhu, et al., Moutan cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats, Int. J. Biol. Macromol. 206 (2022) 849-860. https://doi.org/10.1016/j.ijbiomac.2022.03.077.

[36]

T. Takano, Y. Okutomi, M. Mochizuki, et al., Biological index of environmental lead pollution: accumulation of lead in liver and kidney in mice, Environ. Monit. Assess. 187 (2015) 744. https://doi.org/10.1007/s10661-015-4958-8.

[37]

D. Cheng, H. Li, J. Zhou, et al., Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice, Food Funct. 10 (2019) 681-690. https://doi.org/10.1039/c8fo01755g.

[38]

A. Ozkaya, Z. Sahin, M. Kuzu, et al., Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats, Arch. Physiol. Biochem. 124 (2018) 80-87. https://doi.org/10.1080/13813455.2017.1364772.

[39]

H.M. Abdou, M.A. Hassan, Protective role of omega-3 polyunsaturated fatty acid against lead acetate-induced toxicity in liver and kidney of female rats, Biomed Res. Int. 2014 (2014) 435857. https://doi.org/10.1155/2014/435857.

[40]

G. Hou, M.M. Surhio, H. Ye, et al., Protective effects of a lachnum polysaccharide against liver and kidney injury induced by lead exposure in mice, Int. J. Biol. Macromol. 124 (2019) 716-723. https://doi.org/10.1016/j.ijbiomac.2018.11.133.

[41]

E. Metryka, K. Chibowska, I. Gutowska, et al., Lead (pb) exposure enhances expression of factors associated with inflammation, Int. J. Mol. Sci. 19 (2018) 1813. https://doi.org/10.3390/ijms19061813.

[42]

X. Xie, K. Wang, X. Shen, et al., Potential mechanisms of aortic medial degeneration promoted by co-exposure to microplastics and lead, J. Hazard. Mater. 475 (2024) 134854. http://doi.org/10.1016/j.jhazmat.2024.134854.

[43]

K. Baraczka, K. Nekam, T. Pozsonyi, et al., Investigation of cytokine (tumor necrosis factor-alpha, interleukin-6, interleukin-10) concentrations in the cerebrospinal fluid of female patients with multiple sclerosis and systemic lupus erythematosus, Eur. J. Neurol. 11 (2004) 37-42. https://doi.org/10.1046/j.1351-5101.2003.00706.x.

[44]

I. Maczynska, B. Millo, V. Ratajczak-Stefanska, et al., Proinflammatory cytokine (IL-1β, IL-6, IL-12, IL-18 and TNF-α) levels in sera of patients with subacute cutaneous lupus erythematosus (SCLE), Immunol. Lett. 102 (2006) 79-82. https://doi.org/10.1016/j.imlet.2005.08.001.

[45]

J.A. Gracie, S.E. Robertson, I.B. Mcinnes, Interleukin-18, J. Leukoc. Biol. 73 (2003) 213-224. https://doi.org/10.1189/jlb.0602313.

[46]

K. Nakanishi, T. Yoshimoto, H. Tsutsui, et al., Interleukin-18 regulates both Th1 and Th2 responses, Annu. Rev. Immunol. 19 (2001) 423-474. https://doi.org/10.1146/annurev.immunol.19.1.423.

[47]

L. Arranz, J.M. Lord, M. De la Fuente, Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice, Age 32 (2010) 451-466. https://doi.org/10.1007/s11357-010-9151-y.

[48]

H.F. Liao, T.J. Wu, J.L. Tai, et al., Immunomodulatory potential of the polysaccharide-rich extract from edible cyanobacterium Nostoc commune, Med. Sci. 3 (2015) 112-123. https://doi.org/10.3390/medsci3040112.

[49]

B.O. Adegbesan, G.A. Adenuga, Effect of lead exposure on liver lipid peroxidative and antioxidant defense systems of protein-undernourished rats, Biol. Trace Elem. Res. 116 (2007) 219-225. https://doi.org/10.1007/BF02685932.

[50]

C.Y. Huang, J.S. Deng, W.C. Huang, et al., Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/AKT/MTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated er stress-induced apoptosis and autophagy, Nutrients 12 (2020) 1742. https://doi.org/10.3390/nu12061742.

[51]

X. Cai, S. Hua, J. Deng, et al., Astaxanthin activated the Nrf2/HO-1 pathway to enhance autophagy and inhibit ferroptosis, ameliorating acetaminophen-induced liver injury, Acs. Appl. Mater. Interfaces 14 (2022) 42887-42903. https://doi.org/10.1021/acsami.2c10506.

[52]

T. Wang, H. Tian, T. Pan, et al., Pinocembrin suppresses oxidized low-density lipoprotein-triggered NLRP3 inflammasome/GSDMD-mediated endothelial cell pyroptosis through an Nrf2-dependent signaling pathway, Sci. Rep. 12 (2022) 13885. https://doi.org/10.1038/s41598-022-18297-3.

[53]

C. Yang, Q. Zhao, S. Li, et al., Effects of Lycium barbarum L. polysaccharides on vascular retinopathy: an insight review, Molecules 27 (2022) 5628. https://doi.org/10.3390/molecules27175628.

[54]

H. Meng, J. Wu, L. Shen, et al., Microwave assisted extraction, characterization of a polysaccharide from salvia miltiorrhiza bunge and its antioxidant effects via ferroptosis-mediated activation of the Nrf2/HO-1 pathway, Int. J. Biol. Macromol. 215 (2022) 398-412. https://doi.org/10.1016/j.ijbiomac.2022.06.064.

[55]

J. Wu, X.W. Wen, C. Faulk, et al., Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice, Toxicol. Sci. 151 (2016) 324-333. https://doi.org/10.1093/toxsci/kfw046.

[56]

H. Tao, D.L. Ye, Y.L. Wu, et al., The protective effect of polysaccharide extracted from Portulaca oleracea L. against Pb-induced learning and memory impairments in rats, Int. J. Biol. Macromol. 119 (2018) 617-623. https://doi.org/10.1016/j.ijbiomac.2018.07.138.

[57]

Z. Ren, A. Li, J. Jiang, et al., Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma, Gut 68 (2019) 1014-1023. https://doi.org/10.1136/gutjnl-2017-315084.

[58]

T. Wu, M. Shen, X. Guo, et al., Cyclocarya paliurus polysaccharide alleviates liver inflammation in mice via beneficial regulation of gut microbiota and tlr4/mapk signaling pathways, Int. J. Biol. Macromol. 160 (2020) 164-174. https://doi.org/10.1016/j.ijbiomac.2020.05.187.

[59]

H. Wan, Y. Wang, H. Zhang, et al., Chronic lead exposure induces fatty liver disease associated with the variations of gut microbiota, Ecotox. Environ. Safe. 232 (2022) 113257. https://doi.org/10.1016/j.ecoenv.2022.113257.

[60]

L.L. Olde, S. Mangul, A. Ori, et al., Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia, Transl. Psychiatr. 8 (2018) 96. https://doi.org/10.1038/s41398-018-0107-9.

[61]

C. Yin, X. Qiao, X. Fan, et al., Differences of gut microbiota composition in mice supplied with polysaccharides from γ-irradiated and non-irradiated schizophyllum commune, Food Res. Int. 151 (2022) 110855. https://doi.org/10.1016/j.foodres.2021.110855.

[62]

J. Kunaseth, W. Waiyaput, P. Chanchaem, et al., Vaginal microbiome of women with adenomyosis: a case-control study, Plos One 17 (2022) e263283. https://doi.org/10.1371/journal.pone.0263283.

[63]

R. Ventin-Holmberg, A. Eberl, S. Saqib, et al., Bacterial and fungal profiles as markers of infliximab drug response in inflammatory bowel disease, J. Crohns Colitis 15 (2021) 1019-1031. https://doi.org/10.1093/ecco-jcc/jjaa252.

[64]

J. Jian, M.T. Nie, B. Xiang, et al., Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids, Front. Pharmacol. 13 (2022) 841132. https://doi.org/10.3389/fphar.2022.841132.

[65]

Y. Shi, L. Zhong, Y. Li, et al., Repulsive guidance molecule b deficiency induces gut microbiota dysbiosis and increases the susceptibility to intestinal inflammation in mice, Front. Microbiol. 12 (2021) 648915. https://doi.org/10.3389/fmicb.2021.648915.

[66]

T.S. Nielsen, H.N. Laerke, P.K. Theil, et al., Diets high in resistant starch and arabinoxylan modulate digestion processes and scfa pool size in the large intestine and faecal microbial composition in pigs, Br. J. Nutr. 112 (2014) 1837-1849. https://doi.org/10.1017/S000711451400302X.

[67]

W. Wei, W. Jiang, Z. Tian, et al., Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice, Clin. Nutr. 40 (2021) 4234-4245. https://doi.org/10.1016/j.clnu.2021.01.031.

[68]

M. Platten, E. Nollen, U.F. Rohrig, et al., Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond, Nat. Rev. Drug Discov. 18 (2019) 379-401. https://doi.org/10.1038/s41573-019-0016-5.

[69]

I. Cervenka, L.Z. Agudelo, J.L. Ruas, Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health, Science 357 (2017) 6349. https://doi.org/10.1126/science.aaf9794.

[70]

L. Huang, L. Li, K.D. Klonowski, et al., Induction and role of indoleamine 2,3 dioxygenase in mouse models of influenza a virus infection, Plos One 8 (2013) e66546. https://doi.org/10.1371/journal.pone.0066546.

[71]

L. Pilotte, P. Larrieu, V. Stroobant, et al., Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 2497-2502. https://doi.org/10.1073/pnas.1113873109.

[72]

P.J. Kennedy, J.F. Cryan, T.G. Dinan, et al., Kynurenine pathway metabolism and the microbiota-gut-brain axis, Neuropharmacology 112 (2017) 399-412. https://doi.org/10.1016/j.neuropharm.2016.07.002.

[73]

A. Rahman, S. Al-Qenaie, M.S. Rao, et al., Memantine is protective against cytotoxicity caused by lead and quinolinic acid in cultured rat embryonic hippocampal cells, Chem. Res. Toxicol. 32 (2019) 1134-1143. https://doi.org/10.1021/acs.chemrestox.8b00421.

[74]

Y. Noguchi, Y. Yamamoto, K. Iwahori, et al., Tetracyclines enhance anti-tumor t-cell responses induced by a bispecific T-cell engager, Biol. Pharm. Bull. 45 (2022) 429-437. https://doi.org/10.1248/bpb.b21-00806.

[75]

Z. Chu, H. Chen, P. Wang, et al., Phototherapy using a fluoroquinolone antibiotic drug to suppress tumor migration and proliferation and to enhance apoptosis, ACS Nano 16 (2022) 4917-4929. https://doi.org/10.1021/acsnano.2c00854.

[76]

Y. Sato, K. Atarashi, D.R. Plichta, et al., Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians, Nature 599 (2021) 458-464. https://doi.org/10.1038/s41586-021-03832-5.

[77]

R.Z. Li, X.R. Wang, J. Wang, et al., The key role of sphingolipid metabolism in cancer: new therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance, Front. Oncol. 12 (2022) 941643. https://doi.org/10.3389/fonc.2022.941643.

[78]

D.I. Benjamin, A. Cozzo, X. Ji, et al., Ether lipid generating enzyme agps alters the balance of structural and signaling lipids to fuel cancer pathogenicity, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 14912-14917. https://doi.org/10.1073/pnas.1310894110.

[79]

J.J. Limon, J.H. Skalski, D.M. Underhill, Commensal fungi in health and disease, Cell Host Microbe 22 (2017) 156-165. https://doi.org/10.1016/j.chom.2017.07.002.

[80]

R. Prevel, R. Enaud, A. Orieux, et al., Gut bacteriobiota and mycobiota are both associated with day-28 mortality among critically ill patients, Crit. Care 26 (2022) 105. https://doi.org/10.1186/s13054-022-03980-8.

[81]

X.V. Li, I. Leonardi, I.D. Iliev, Gut mycobiota in immunity and inflammatory disease, Immunity 50 (2019) 1365-1379. https://doi.org/10.1016/j.immuni.2019.05.023.

[82]

J.S. Bajaj, E.J. Liu, R. Kheradman, et al., Fungal dysbiosis in cirrhosis, Gut 67 (2018) 1146-1154. https://doi.org/10.1136/gutjnl-2016-313170.

[83]

Y. Chen, Z. Chen, R. Guo, et al., Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection, Diagn. Microbiol. Infect. Dis. 70 (2011) 492-498. https://doi.org/10.1016/j.diagmicrobio.2010.04.005.

[84]

D.L. Jabes, Y. de Maria, B.D. Aciole, et al., Fungal dysbiosis correlates with the development of tumor-induced cachexia in mice, J. Fungi 6 (2020) 364. https://doi.org/10.3390/jof6040364.

[85]

G. Kong, K.A. Le Cao, A.J. Hannan, Alterations in the gut fungal community in a mouse model of huntington’s disease, Microbiol. Spectr. 10 (2022) e219221. https://doi.org/10.1128/spectrum.02192-21.

[86]

H. Sokol, V. Leducq, H. Aschard, et al., Fungal microbiota dysbiosis in IBD, Gut 66 (2017) 1039-1048. https://doi.org/10.1136/gutjnl-2015-310746.

[87]

M. Schenk, C. Mueller, The mucosal immune system at the gastrointestinal barrier, Best Pract. Res. Clin. Gastroenterol. 22 (2008) 391-409. https://doi.org/10.1016/j.bpg.2007.11.002.

[88]

G. Hong, Y. Li, M. Yang, et al., Gut fungal dysbiosis and altered bacterial-fungal interaction in patients with diarrhea-predominant irritable bowel syndrome: an explorative study, Neurogastroenterol. Motil. 32 (2020) e13891. https://doi.org/10.1111/nmo.13891.

[89]
J. Xu, Y. Zhang, X. Wang, et al., Changes and roles of intestinal fungal microbiota in coronary heart disease complicated with nonalcoholic fatty liver disease, Am. J. Transl. Res. 12 (2020) 3445-3460. https://orcid.org/0000-0003-0412-4134
[90]

W. Panpetch, V. Sawaswong, P. Chanchaem, et al., Corrigendum: candida administration worsens cecal ligation and puncture-induced sepsis in obese mice through gut dysbiosis enhanced systemic inflammation, impact of pathogen-associated molecules from gut translocation and saturated fatty acid, Front. Immunol. 11 (2020) 613095. https://doi.org/10.3389/fimmu.2020.613095.

[91]

V. Urubschurov, K. Busing, G. Freyer, et al., New insights into the role of the porcine intestinal yeast, kazachstania slooffiae, in intestinal environment of weaned piglets, FEMS Microbiol. Ecol. 93 (2017) 245. https://doi.org/10.1093/femsec/fiw245.

[92]

M.M. El, A. Al-Hussaini, B. Fanelli, et al., Fungal dysbiosis in children with celiac disease, Dig. Dis. Sci. 67 (2022) 216-223. https://doi.org/10.1007/s10620-021-06823-8.

[93]

L. Zhang, Y. Yue, M. Shi, et al., Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice, Food Chem. 320 (2020) 126648. https://doi.org/10.1016/j.foodchem.2020.126648.

[94]

Y. Wang, Q. Xie, S. Sun, et al., Probiotics-fermented massa medicata fermentata ameliorates weaning stress in piglets related to improving intestinal homeostasis, Appl. Microbiol. Biotechnol. 102 (2018) 10713-10727. https://doi.org/10.1007/s00253-018-9438-y.

[95]

L. Zhang, H. Zhan, W. Xu, et al., The role of gut mycobiome in health and diseases, Ther. Adv. Gastroenterol. 14 (2021) 1088230106. https://doi.org/10.1177/17562848211047130.

[96]

J.Y. Xiang, Y.Y. Chi, J.X. Han, et al., Litchi chinensis seed prevents obesity and modulates the gut microbiota and mycobiota compositions in high-fat diet-induced obese zebrafish, Food Funct. 13 (2022) 2832-2845. https://doi.org/10.1039/d1fo03991a.

[97]

A.Y. Peleg, D.A. Hogan, E. Mylonakis, Medically important bacterial-fungal interactions, Nat. Rev. Microbiol. 8 (2010) 340-349. https://doi.org/10.1038/nrmicro2313.

[98]

C. Rao, K.Z. Coyte, W. Bainter, et al., Rakoff-Nahoum, Multi-kingdom ecological drivers of microbiota assembly in preterm infants, Nature 591 (2021) 633-638. https://doi.org/10.1038/s41586-021-03241-8.

[99]

H. Carolus, K. Van Dyck, P. Van Dijck, Candida albicans and Staphylococcus species: a threatening twosome, Front. Microbiol. 10 (2019) 2162. https://doi.org/10.3389/fmicb.2019.02162.

[100]

M.L. Richard, H. Sokol, The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 331-345. https://doi.org/10.1038/s41575-019-0121-2.

[101]

H.H. Le, M.T. Lee, K.R. Besler, et al., Characterization of interactions of dietary cholesterol with the murine and human gut microbiome, Nat. Microbiol. 7 (2022) 1390-1403. https://doi.org/10.1038/s41564-022-01195-9.

[102]

L. Fan, J. Chen, L. Pan, et al., Alterations of gut microbiome, metabolome, and lipidome in takayasu arteritis, Arthritis Rheumatol. 75(2) (2023) 266-278. https://doi.org/10.1002/art.42331.

[103]

F.T. Prunty, Acute porphyria: some properties of porphobilinogen, Biochem. J. 39 (1945) 446-451. https://doi.org/10.1042/bj0390446.

[104]

R. Akilen, Z. Pimlott, A. Tsiami, et al., Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes, Nutrition 29 (2013) 1192-1196. https://doi.org/10.1016/j.nut.2013.03.007.

[105]

W. Lai, Z. Zheng, X. Zhang, et al., Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window, Neurotox. Res. 28 (2015) 108-121. https://doi.org/10.1007/s12640-015-9529-9.

[106]

C.Y. Hu, Q.Y. Zhang, J.H. Chen, et al., Protective effect of salidroside on mitochondrial disturbances via reducing mitophagy and preserving mitochondrial morphology in OGD-induced neuronal injury, Curr. Med. Sci. 41 (2021) 936-943. https://doi.org/10.1007/s11596-021-2374-6.

[107]

H. Sato, M. Uzu, T. Kashiba, et al., Trichostatin a modulates cellular metabolism in renal cell carcinoma to enhance sunitinib sensitivity, Eur. J. Pharmacol. 847 (2019) 143-157. https://doi.org/10.1016/j.ejphar.2019.01.040.

[108]

T. Haritwal, K. Maan, P. Rana, et al., Trichostatin A, an epigenetic modifier, mitigates radiation-induced androphysiological anomalies and metabolite changes in mice as evident from NMR-based metabolomics, Int. J. Radiat. Biol. 95 (2019) 443-451. https://doi.org/10.1080/09553002.2018.1524989.

[109]

Z. Wang, Z. Jia, Z. Zhou, et al., Long-term cardiac damage associated with abdominal irradiation in mice, Front. Pharmacol. 13 (2022) 850735. https://doi.org/10.3389/fphar.2022.850735.

[110]

J. Sun, J. Liu, G. Ren, et al., Impact of purple sweet potato (Ipomoea batatas L.) polysaccharides on the fecal metabolome in a murine colitis model, RSC Adv. 12 (2022) 11376-11390. https://doi.org/10.1039/d2ra00310d.

[111]

N. Yang, L. Zou, Y. Wang, Label-free quantitative proteomic analysis of reserpine-induced depression in mice intervened by berberine, Pak. J. Pharm. Sci. 35 (2022) 151-155. https://doi.org/10.36721/PJPS.2022.35.1.REG.151-155.1.

[112]

Y. Hu, Z. Hu, H. Ding, et al., Identification of key biomarkers and potential signaling pathway associated with poor progression of gastric cancer, Transl. Cancer Res. 9 (2020) 5459-5472. https://doi.org/10.21037/tcr-20-926.

[113]

J. Liang, Y. Huang, C. Yang, et al., The effect of PPP2CA expression on the prognosis of patients with hepatocellular carcinoma and its molecular biological characteristics, J. Gastrointest. Oncol. 12 (2021) 3008-3021. https://doi.org/10.21037/jgo-21-720.

[114]

X. Li, W. Zhao, M. Xiao, et al., Penthorum chinense Pursh.. extract attenuates non-alcholic fatty liver disease by regulating gut microbiota and bile acid metabolism in mice, J. Ethnopharmacol. 294 (2022) 115333. https://doi.org/10.1016/j.jep.2022.115333.

[115]

Z.H. Yang, F. Liu, X.R. Zhu, et al., Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis, World J. Gastroenterol. 27 (2021) 3609-3629. https://doi.org/10.3748/wjg.v27.i24.3609.

[116]

Z. Yu, Z. Shi, Z. Zheng, et al., Dehp induce cholesterol imbalance via disturbing bile acid metabolism by altering the composition of gut microbiota in rats, Chemosphere 263 (2021) 127959. https://doi.org/10.1016/j.chemosphere.2020.127959.

[117]

Z. Chen, Z. Tang, J. Kong, et al., Lactobacillus casei syf-08 protects against Pb-induced injury in young mice by regulating bile acid metabolism and increasing pb excretion, Front. Nutr. 9 (2022) 914323. https://doi.org/10.3389/fnut.2022.914323.

[118]

J.A. Park, The effect of bile acids on porphyromonas gingivalis lipopolysaccharide-induced inflammatory response, Journal of Korean Academy of Oral Health 44 (2020) 205-213. https://doi.org/10.11149/jkaoh.2020.44.4.205.

[119]

S. Hohenester, V. Kanitz, A.E. Kremer, et al., Glycochenodeoxycholate promotes liver fibrosis in mice with hepatocellular cholestasis, Cells 9 (2020) 281. https://doi.org/10.3390/cells9020281.

[120]

R.H. Rosenman, S.O. Byers, M. Friedman, Role of cholate in dietary-induced hypercholesteremia of rats and rabbits, Am. J. Physiol 175 (1953) 307-309. https://doi.org/10.1152/ajplegacy.1953.175.2.307.

[121]

R. Jha, J.D. Berrocoso, Review: dietary fiber utilization and its effects on physiological functions and gut health of swine, Animal 9 (2015) 1441-1452. https://doi.org/10.1017/S1751731115000919.

Food Science and Human Wellness
Pages 3482-3500
Cite this article:
Liu Y, Ren P, Li H, et al. Nostoc commune Vauch. polysaccharide alleviates Pb-induced hepatorenal toxicity by changing gut bacteriome, mycobiome, and metabolome. Food Science and Human Wellness, 2024, 13(6): 3482-3500. https://doi.org/10.26599/FSHW.2023.9250032

440

Views

18

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 January 2023
Revised: 19 February 2023
Accepted: 14 April 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return