Probiotics crosstalk immunity to improve host glycolipid metabolism, which is a new strategy for obesity. This study aimed to explore the functions of Lacticaseibacillus paracasei K56 (K56), in regulating the lipid metabolism of adipocytes and its immune regulation mechanisms. We co-cultured RAW264.7 macrophages with K56, and the K56-stimulated RAW264.7-conditioned medium (K56-CM) was collected and treated with 3T3-L1 pre-adipocytes. The expression of lipid metabolism-related markers of adipocytes, and the content of cytokines in CMs were detected. The results demonstrated that K56-CM promoted the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), and other adipogenesis-related markers, which resulted in the upregulation of lipolysis markers, such as hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL). The activation of lipolysis enhanced the expression of fatty acid β-oxidation-related and mitochondrial biogenesis-related markers and reduced lipid accumulation in adipocytes. The glycolipid metabolism pattern of K56 may be due to its immunomodulatory characteristics, which stimulated macrophages to secrete fewer TNF-α, thereby promoting the expression of lipolysis-related markers, and TNF-α synergized with lipase to promote lipolysis. It has not been reported that L. paracasei modulated lipid metabolism via the lipolysis pathway, which suggested that K56 may regulate glycolipid metabolism of the host by maintaining immune homeostasis.
A. Afshin, M.H. Forouzanfar, M.B. Reitsma, et al., Health effects of overweight and obesity in 195 countries over 25 Years, N. Engl. J. Med. 377 (2017) 13-27. https://doi.org/10.1056/NEJMoa1614362.
G.P. Püschel, J. Klauder, J. Henkel, Macrophages, low-grade inflammation, insulin resistance and hyperinsulinemia: a mutual ambiguous relationship in the development of metabolic diseases, J. Clin. Med. 11 (2022). https://doi.org/10.3390/jcm11154358.
M. An, Y.H. Park, Y.H. Lim, Antiobesity and antidiabetic effects of the dairy bacterium Propionibacterium freudenreichii MJ2 in high-fat diet-induced obese mice by modulating lipid metabolism, Sci. Rep. 11 (2021) 2481. https://doi.org/10.1038/s41598-021-82282-5.
M.S. Rahman, I. Kang, Y. Lee, et.al., Bifidobacterium longum subsp. infantis YB0411 inhibits adipogenesis in 3T3-L1 pre-adipocytes and reduces high-fat-diet-induced obesity in mice, J. Agric. Food Chem. 69 (2021) 6032-6042. https://doi.org/10.1021/acs.jafc.1c01440
K.J. Han, N.K. Lee, H.S. Yu, et.al., Anti-adipogenic effects of the probiotic Lactiplantibacillus plantarum KU15117 on 3T3-L1 adipocytes, Probiotics Antimicro. 14 (2022) 501-509. https://doi.org/10.1007/s12602-021-09818-z.
S. Kim, S.I. Choi, M. Jang, et.al., Anti-adipogenic effect of Lactobacillus fermentum MG4231 and MG4244 through AMPK pathway in 3T3-L1 preadipocytes, Food. Sci. Biotechnol. 29 (2020) 1541-1551. https://doi.org/10.1007/s10068-020-00819-2.
H. Lu, W. Zhao, W.H. Liu, et.al., Safety evaluation of Bifidobacterium lactis BL-99 and Lacticaseibacillus paracasei K56 and ET-22 in vitro and in vivo, Front. Microbiol. 12 (2021) 686541. https://doi.org/10.3389/fmicb.2021.686541.
Q.Q. Min, T. Sun, J.Y. Xu, et al., Differential modulation of the metabolic effects of diet-induced obesity by probiotic Lactobacillus paracasei K56 and prebiotic α-galactooligosaccharides, Curr. Top. Nutraceut. R. 19 (2020) 21-28. https://doi.org/10.37290/ctnr2641-452X.19:21-28.
Z. Miao, H. Zheng, W.H. Liu, et al., Lacticaseibacillus paracasei K56 attenuates high-fat diet-induced obesity by modulating the gut microbiota in mice, Probiotics Antimicro. 15 (2023) 844-855. https://doi.org/10.1007/s12602-022-09911-x.
S. Khan, H. Luck, S. Winer, et al., Emerging concepts in intestinal immune control of obesity-related metabolic disease, Nat. Commun. 12 (2021) 2598. https://doi.org/10.1038/s41467-021-22727-7.
D.A. Winer, H. Luck, S. Tsai, et al., The intestinal immune system in obesity and insulin resistance, Cell Metab. 23 (2016) 413-426. https://doi.org/10.1016/j.cmet.2016.01.003.
C. Peng, J. Li, Z. Miao, et al., Early life administration of Bifidobacterium bifidum BD-1 alleviates long-term colitis by remodeling the gut microbiota and promoting intestinal barrier development, Front. Microbiol. 13 (2022) 916824. https://doi.org/10.3389/fmicb.2022.916824.
S. Wang, C. Peng, J. Li, et al., Protective effect and mechanism of Bifidobacterium bifidum TMC3115 on long-term colitis in mice which exposed to antibiotic in early life, Wei Sheng Yan Jiu 51 (2022) 624-644. https://doi.org/10.19813/j.cnki.weishengyanjiu.2022.04.021.
G.P. Püschel, J. Klauder, J. Henkel, Macrophages, low-grade inflammation, insulin resistance and hyperinsulinemia: a mutual ambiguous relationship in the development of metabolic diseases, J. Clin. Med. 11 (2022). https://doi.org/10.3390/jcm11154358.
S.P. Weisberg, D. McCann, M. Desai, et al., Obesity is associated with macrophage accumulation in adipose tissue, J. Clin. Invest. 112 (2003) 1796-1808. https://doi.org/10.1172/jci19246.
A.A. Herrada, A. Olate-Briones, A. Rojas, et al., Adipose tissue macrophages as a therapeutic target in obesity-associated diseases, Obes. Rev. 22 (2021) e13200. https://doi.org/10.1111/obr.13200.
L. Shi, M. Li, K. Miyazawa, et al., Effects of heat-inactivated Lactobacillus gasseri TMC0356 on metabolic characteristics and immunity of rats with the metabolic syndrome, Br. J. Nutr. 109 (2013) 263-272. https://doi.org/10.1017/s000711451200116x.
X. Kang, H. Liang, Y. Luo, et al., Streptococcus thermophilus MN-ZLW-002 can inhibit pre-adipocyte differentiation through macrophage activation, Biol. Pharm. Bull. 44 (2021) 316-324. https://doi.org/10.1248/bpb.b20-00335.
K. Miyazawa, F. He, K. Yoda, et al., Potent effects of, and mechanisms for, modification of crosstalk between macrophages and adipocytes by lactobacilli, Microbiol. Immunol. 56 (2012) 847-854. https://doi.org/10.1111/j.1348-0421.2012.00512.x.
F. Joint, WHO working group report on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada 30 (2002) 16-22.
A. Di Cerbo, B. Palmieri, Lactobacillus paracasei subsp. Paracasei F19; a farmacogenomic and clinical update, Nutr. Hosp. 28 (2013) 1842-1850.
H. Suzuki, T. Yamazaki, K. Ohshio, et al., A specific strain of lactic acid bacteria, Lactobacillus paracasei, inhibits inflammasome activation in vitro and prevents inflammation-related disorders, J. Immunol. 205 (2020) 811-821. https://doi.org/10.4049/jimmunol.1900657.
S. Lee, R. Kirkland, Z.I. Grunewald, et al., Beneficial effects of non-encapsulated or encapsulated probiotic supplementation on microbiota composition, intestinal barrier functions, inflammatory profiles, and glucose tolerance in high fat fed rats, Nutrients 11 (2019). https://doi.org/10.3390/nu11091975.
G. Frühbeck, Overview of adipose tissue and its role in obesity and metabolic disorders, Methods Mol. Biol. 456 (2008) 1-22. https://doi.org/10.1007/978-1-59745-245-8_1.
S. Kersten, Mechanisms of nutritional and hormonal regulation of lipogenesis, EMBO Rep. 2 (2001) 282-286. https://doi.org/10.1093/embo-reports/kve071.
E.D. Rosen, O.A. MacDougald, Adipocyte differentiation from the inside out, Nat. Rev. Mol. Cell Biol. 7 (2006) 885-896. https://doi.org/10.1038/nrm2066.
J.K. Sethi, G.S. Hotamisligil, The role of TNFα in adipocyte metabolism, Semin. Cell Dev. Biol. 10 (1999) 19-29. https://doi.org/10.1006/scdb.1998.0273.
M. Hossain, D.S. Park, M.S. Rahman, et al., Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508 culture-supernatant ameliorate obesity by inducing thermogenesis in obese-mice, Benef. Microbes 11 (2020) 361-373. https://doi.org/10.3920/bm2019.0179.
D. Kratky, S. Obrowsky, D. Kolb, et al., Pleiotropic regulation of mitochondrial function by adipose triglyceride lipase-mediated lipolysis, Biochimie. 96 (2014) 106-112. https://doi.org/10.1016/j.biochi.2013.06.023.
C. Sztalryd, G. Xu, H. Dorward, et al., Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation, J. Cell Biol. 161 (2003) 1093-1103. https://doi.org/10.1083/jcb.200210169.
S. Lobo, B.M. Wiczer, D.A. Bernlohr, Functional analysis of long-chain acyl-CoA synthetase 1 in 3T3-L1 adipocytes, J. Biol. Chem. 284 (2009) 18347-18356. https://doi.org/10.1074/jbc.M109.017244.
F. Ouali, F. Djouadi, C. Merlet-Bénichou, et al., Regulation of fatty acid transport protein and mitochondrial and peroxisomal β-oxidation gene expression by fatty acids in developing rats, Pediatr. Res. 48 (2000) 691-696. https://doi.org/10.1203/00006450-200011000-00023.
M. Kim, K. Park, I. Choi, The metabolic suppressor 3-iodothyronamine enhances lipolysis in 3T3-L1 adipocytes via activation of the adenosine monophosphate-activated protein kinase/forkhead box O1 signaling pathway, J. Physiol. Pharmacol. 71 (2020) 409-416. https://doi.org/10.26402/jpp.2020.3.12.
J. Lone, H.A. Parray, J.W. Yun, Nobiletin induces brown adipocyte-like phenotype and ameliorates stress in 3T3-L1 adipocytes, Biochimie 146 (2018) 97-104. https://doi.org/10.1016/j.biochi.2017.11.021.
D. Pitocco, M. Di Leo, L. Tartaglione, et al., The role of gut microbiota in mediating obesity and diabetes mellitus, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 1548-1562. https://doi.org/10.26355/eurrev_202002_20213.
R. Burcelin, Gut microbiota and immune crosstalk in metabolic disease, Mol. Metab. 5 (2016) 771-781. https://doi.org/10.1016/j.molmet.2016.05.016.
C.C. Bain, A. Schridde, Origin, differentiation, and function of intestinal macrophages, Front. Immunol. 9 (2018) 2733. https://doi.org/10.3389/fimmu.2018.02733.
A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, et al., Macrophage plasticity, polarization, and function in health and disease, J. Cell Physiol. 233 (2018) 6425-6440. https://doi.org/10.1002/jcp.26429.
V. Veckman, M. Miettinen, S. Matikainen, et al., Lactobacilli and Streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis, J. Leukoc Biol. 74 (2003) 395-402. https://doi.org/10.1189/jlb.0402212.
B. Wang, Y. Wu, R. Liu, et al., Lactobacillus rhamnosus GG promotes M1 polarization in murine bone marrow-derived macrophages by activating TLR2/MyD88/MAPK signaling pathway, Anim. Sci. J. 91 (2020) e13439. https://doi.org/10.1111/asj.13439.
L.M. Rocha-Ramírez, R.A. Pérez-Solano, S.L. Castañón-Alonso, et al., Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages, J. Immunol. Res. 2017 (2017) 4607491. https://doi.org/10.1155/2017/4607491.
H. Morita, F. He, T. Fuse, et al., Cytokine production by the murine macrophage cell line J774.1 after exposure to lactobacilli, Biosci. Biotechnol. Biochem. 66 (2002) 1963-1966. https://doi.org/10.1271/bbb.66.1963.
D.H. Han, W.K. Kim, S. Park, et al., Lactobacillus paracasei treatment modulates mRNA expression in macrophages, Biochem. Biophys Rep. 23 (2020) 100788. https://doi.org/10.1016/j.bbrep.2020.100788.
I.K. Hyun, J.S. Lee, J.W. Yoon, et al., Skimmed milk fermented by lactic acid bacteria inhibits adipogenesis in 3T3-L1 pre-adipocytes by downregulating PPARγ via TNF-α induction in vitro, Food Funct. 12 (2021) 8605-8614. https://doi.org/10.1039/d1fo00076d.
W.P. Cawthorn, J.K. Sethi, TNF-alpha and adipocyte biology, FEBS Lett. 582 (2008) 117-131. https://doi.org/10.1016/j.febslet.2007.11.051.
S. Ranjit, E. Boutet, P. Gandhi, et al., Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes, J. Lipid Res. 52 (2011) 221-236. https://doi.org/10.1194/jlr.M008771.
T. Kawai, S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nat. Immunol. 11 (2010) 373-384. https://doi.org/10.1038/ni.1863.
A.L. Li, Y.Q. Sun, P. Du, et al., The effect of Lactobacillus actobacillus peptidoglycan on bovine β-lactoglobulin-sensitized mice via TLR2/NF-κB pathway, Iran J. Allergy Asthma. 16 (2017) 147-158.
H. Liang, Z. Luo, Z. Miao, et al., Lactobacilli and bifidobacteria derived from infant intestines may activate macrophages and lead to different IL-10 secretion, Biosci. Biotechnol. Biochem. 84 (2020) 2558-2568. https://doi.org/10.1080/09168451.2020.1811948.
Z. Wu, D. Pan, Y. Guo, et al., Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains, Carbohydr. Polym. 128 (2015) 130-137. https://doi.org/10.1016/j.carbpol.2015.04.026.
S.R. Qi, Y.J. Cui, J.X. Liu, et al., Lactobacillus rhamnosus GG components, SLP, gDNA and CpG, exert protective effects on mouse macrophages upon lipopolysaccharide challenge, Lett. Appl. Microbiol. 70 (2020) 118-127. https://doi.org/10.1111/lam.13255.