PDF (16.9 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Open Access

The gut-liver axis mechanism of increased susceptibility to non-alcoholic fatty disease in female offspring rats with prenatal caffeine exposure

Qian Wanga,1Xiaoqian Lua,1Wen Hua,bCong ZhangaKexin Liua,bKai TongbKaiqi ChenaHui Wanga,b()
Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China

Peer review under responsibility of Tsinghua University Press.

1 These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Caffeine intake during pregnancy is common, while its effect on gut microbiota composition of offspring and the relationship with susceptibility to adult diseases remains unclear. This study aimed to confirm the effects of prenatal caffeine exposure (PCE) on the gut microbiota composition and its metabolites in female offspring rats, and to further elucidate its underlying mechanism and intervention targets in adult non-alcoholic fatty disease (NAFLD). The results showed that the gut microbiota of PCE female offspring at multiple time points from infancy to adolescence were significantly changed with depletion of butyric acid-producing bacteria, leading to a decrease in butyric acid in adulthood. It was also found that PCE female offspring rats were sensitive to NAFLD induced by a postnatal high-fat diet (HFD), which is mainly related to the enhancement of hepatic triglyceride synthesis function. Through mechanism exploration, we found that HFD further reduced the fecal and serum butyric acid levels in the PCE female offspring, which was significantly negatively correlated with hepatic SREBP-1c/FASN mRNA expression and triglyceride level. In vivo and in vitro experiments confirmed that sodium butyrate (NaB) supplementation could reduce hepatic lipid accumulation through MCT1/GPR109A-AMPK, thereby effectively decreasing the susceptibility to NAFLD in the PCE female offspring rats.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3522_ESM.docx (21.6 KB)

References

[1]

P. Ferretti, E. Pasolli, A. Tett, et al., Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome, Cell Host Microbe 24 (2018) 133-145.e135. http://doi.org/10.1016/j.chom.2018.06.005.

[2]

D.M. Chu, K.M. Antony, J. Ma, et al., The early infant gut microbiome varies in association with a maternal high-fat diet, Genome Med. 8 (2016) 77. http://doi.org/10.1186/s13073-016-0330-z.

[3]

U.D. Wankhade, Y. Zhong, P. Kang, et al., Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations, PLoS One 12 (2017) e0175675. http://doi.org/10.1371/journal.pone.0175675.

[4]

X. Dai, Z. Guo, D. Chen, et al., Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood, Gut Microbes 11 (2020) 1043-1063. http://doi.org/10.1080/19490976.2020.1738187.

[5]

W. Qu, L. Liu, L. Miao, Exposure to antibiotics during pregnancy alters offspring outcomes, Expert Opin. Drug Metab. Toxicol. 17 (2021) 1165-1174. http://doi.org/10.1080/17425255.2021.1974000.

[6]

C.D. Frary, R.K. Johnson, M.Q. Wang, Food sources and intakes of caffeine in the diets of persons in the United States, J. Am. Diet Assoc. 105 (2005) 110-113. http://doi.org/10.1016/j.jada.2004.10.027.

[7]

C.S. Group, Maternal caffeine intake during pregnancy and risk of fetal growth restriction: a large prospective observational study, BMJ 337 (2008) a2332. http://doi.org/10.1136/bmj.a2332.

[8]

E. Papadopoulou, J. Botton, A.L. Brantsæter, et al., Maternal caffeine intake during pregnancy and childhood growth and overweight: results from a large Norwegian prospective observational cohort study, BMJ Open 8 (2018) e018895. http://doi.org/10.1136/bmjopen-2017-018895.

[9]

D.W. Kolpin, E.T. Furlong, M.T. Meyer, et al., Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance, Environ. Sci. Technol. 36 (2002) 1202-1211. http://doi.org/10.1021/es011055j.

[10]

W.Z. Zhang, N.N. Sun, Y. Hu, et al., Caffeine exposure causes immune dysfunction and intrauterine growth restriction retardation in rats, Biomed. Environ. Sci. 35 (2022) 170-173. http://doi.org/10.3967/bes2022.025.

[11]

D. Xu, Y. Wu, F. Liu, et al., A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion, Toxicol. Appl. Pharmacol. 264 (2012) 395-403. http://doi.org/10.1016/j.taap.2012.08.016.

[12]

L. Wang, L. Shen, J. Ping, et al., Intrauterine metabolic programming alteration increased susceptibility to non-alcoholic adult fatty liver disease in prenatal caffeine-exposed rat offspring, Toxicol. Lett. 224 (2014) 311-318. http://doi.org/10.1016/j.toxlet.2013.11.006.

[13]

Y. Shangguan, Y. Wen, Y. Tan, et al., Intrauterine programming of glucocorticoid-insulin-like growth factor-1 axis-mediated developmental origin of osteoporosis susceptibility in female offspring rats with prenatal caffeine exposure, Am. J. Pathol. 188 (2018) 2863-2876. http://doi.org/10.1016/j.ajpath.2018.08.008.

[14]

A.K. Ortqvist, C. Lundholm, J. Halfvarson, et al., Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study, Gut 68 (2019) 218-225. http://doi.org/10.1136/gutjnl-2017-314352.

[15]

P.D. Gluckman, M.A. Hanson, C. Cooper, et al., Effect of in utero and early-life conditions on adult health and disease, N. Engl. J. Med. 359 (2008) 61-73. http://doi.org/10.1056/NEJMra0708473.

[16]

E. Jašarević, C.D. Howard, A.M. Misic, et al., Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner, Sci. Rep. 7 (2017) 44182. http://doi.org/10.1038/srep44182.

[17]

C.M. Mulligan, J.E. Friedman, Maternal modifiers of the infant gut microbiota: metabolic consequences, J. Endocrinol. 235 (2017) R1-R12. http://doi.org/10.1530/joe-17-0303.

[18]

D. Compare, P. Coccoli, A. Rocco, et al., Gut-liver axis: the impact of gut microbiota on non alcoholic fatty liver disease, Nutr. Metab. Cardiovasc. Dis. 22 (2012) 471-476. http://doi.org/10.1016/j.numecd.2012.02.007.

[19]

S. Bashiardes, H. Shapiro, S. Rozin, et al., Non-alcoholic fatty liver and the gut microbiota, Mol. Metab. 5 (2016) 782-794. http://doi.org/10.1016/j.molmet.2016.06.003.

[20]

H. Chu, Y. Duan, L. Yang, et al., Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease, Gut 68 (2019) 359-370. http://doi.org/10.1136/gutjnl-2018-316307.

[21]

H. He, H. Luo, L. Liu, et al., Prenatal caffeine exposure caused H-type blood vessel-related long bone dysplasia via miR375/CTGF signaling, FASEB J. 35 (2021) e21370. http://doi.org/10.1096/fj.202002230R.

[22]

S. Hu, L. Xia, H. Luo, et al., Prenatal caffeine exposure increases the susceptibility to non-alcoholic fatty liver disease in female offspring rats via activation of GR-C/EBPα-SIRT1 pathway, Toxicology 417 (2019) 23-34. http://doi.org/10.1016/j.tox.2019.02.008.

[23]

D. Zhang, K. Liu, W. Hu, et al., Prenatal dexamethasone exposure caused fetal rats liver dysplasia by inhibiting autophagy-mediated cell proliferation, Toxicology 449 (2021) 152664. http://doi.org/10.1016/j.tox.2020.152664.

[24]

D.E. Kleiner, E.M. Brunt, M. Van Natta, et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease, Hepatology 41 (2005) 1313-1321. http://doi.org/10.1002/hep.20701.

[25]

D. Zhou, Y.W. Chen, Z.H. Zhao, et al., Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression, Exp. Mol. Med. 50 (2018) 1-12. http://doi.org/10.1038/s12276-018-0183-1.

[26]

T. Yang, H. Yang, C. Heng, et al., Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice, Food Funct. 11 (2020) 10675-10689. http://doi.org/10.1039/d0fo01954b.

[27]

X. Weng, R. Odouli, D.K. Li, Maternal caffeine consumption during pregnancy and the risk of miscarriage: a prospective cohort study, Am. J. Obstet. Gynecol. 198 (2008) 279. http://doi.org/10.1016/j.ajog.2007.10.803.

[28]

D.C. Greenwood, N. Alwan, S. Boylan, et al., Caffeine intake during pregnancy, late miscarriage and stillbirth, Eur. J. Epidemiol. 25 (2010) 275-280. http://doi.org/10.1007/s10654-010-9443-7.

[29]

Q.X. Li, L.L. Wang, Y.Z. Wang, et al., Programming changes in GLUT1 mediated the accumulation of AGEs and matrix degradation in the articular cartilage of female adult rats after prenatal caffeine exposure, Pharmacol. Res. 151 (2020) 104555. http://doi.org/10.1016/j.phrs.2019.104555.

[30]

G. Chen, Q. Zhang, C. Ai, et al., Serum metabolic profile characteristics of offspring rats before and after birth caused by prenatal caffeine exposure, Toxicology 427 (2019) 152302. http://doi.org/10.1016/j.tox.2019.152302.

[31]

X. Xie, Y. Tan, H. Xiao, et al., Subchondral bone dysplasia mediates susceptibility to osteoarthritis in female adult offspring rats induced by prenatal caffeine exposure, Toxicol. Lett. 321 (2020) 122-130. http://doi.org/10.1016/j.toxlet.2019.12.026.

[32]

N.B. Ojeda, S. Intapad, B.T. Alexander, Sex differences in the developmental programming of hypertension, Acta Physiol. 210 (2014) 307-316. http://doi.org/10.1111/apha.12206.

[33]

J. Li, H. Luo, Y. Wu, et al., Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet, Toxicol. Appl. Pharmacol. 284 (2015) 345-353. http://doi.org/10.1016/j.taap.2015.03.002.

[34]

F. Fåk, S. Ahrné, G. Molin, et al., Microbial manipulation of the rat dam changes bacterial colonization and alters properties of the gut in her offspring, Am. J. Physiol. Gastrointest. Liver Physiol. 294 (2008) G148-154. http://doi.org/10.1152/ajpgi.00023.2007.

[35]

Y. Pu, J. Yang, L. Chang, et al., Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 11753-11759. http://doi.org/10.1073/pnas.1922287117.

[36]

C.A. Kerr, D.M. Grice, C.D. Tran, et al., Early life events influence whole-of-life metabolic health via gut microflora and gut permeability, Crit. Rev. Microbiol. 41 (2015) 326-340. http://doi.org/10.3109/1040841x.2013.837863.

[37]

C. Milani, S. Duranti, F. Bottacini, et al., The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota, Microbiol. Mol. Biol. Rev. 81 (2017) e00036-00017. http://doi.org/10.1128/mmbr.00036-17.

[38]

H. Kou, G.H. Wang, L.G. Pei, et al., Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats, Naturwissenschaften 104 (2017) 89. http://doi.org/10.1007/s00114-017-1510-4.

[39]

B. Boersma, J.M. Wit, Catch-up growth, Endocr. Rev. 18 (1997) 646-661. http://doi.org/10.1210/edrv.18.5.0313.

[40]

Y. Zhao, J. Zhou, J. Liu, et al., Metagenome of gut microbiota of children with nonalcoholic fatty liver disease, Front. Pediatr. 7 (2019) 518. http://doi.org/10.3389/fped.2019.00518.

[41]

M. Lopez-Siles, S.H. Duncan, L.J. Garcia-Gil, et al., Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics, ISME J. 11 (2017) 841-852. http://doi.org/10.1038/ismej.2016.176.

[42]

D. Zeevi, T. Korem, A. Godneva, et al., Structural variation in the gut microbiome associates with host health, Nature 568 (2019) 43-48. http://doi.org/10.1038/s41586-019-1065-y.

[43]

M. Balvers, M. Deschasaux, B.J. van den Born, et al., Analyzing type 2 diabetes associations with the gut microbiome in individuals from two ethnic backgrounds living in the same geographic area, Nutrients 13 (2021). http://doi.org/10.3390/nu13093289.

[44]

C.B. Wong, T. Odamaki, J.Z. Xiao, Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: modulation of gut microbiome as the principal action, J. Funct. Foods 54 (2019) 506-519. http://doi.org/10.1016/j.jff.2019.02.002.

[45]

E.S. Lim, D. Wang, L.R. Holtz, The bacterial microbiome and virome milestones of infant development, Trends Microbiol. 24 (2016) 801-810. http://doi.org/10.1016/j.tim.2016.06.001.

[46]

R. Wang, S. Li, H. Jia, et al., Protective effects of cinnamaldehyde on the inflammatory response, oxidative stress, and apoptosis in liver of salmonella typhimurium-challenged mice, Molecules 26 (2021) 2309. http://doi.org/10.3390/molecules26082309.

[47]

A. O’Sullivan, X. He, E.M. McNiven, et al., Early diet impacts infant rhesus gut microbiome, immunity, and metabolism, J. Proteome Res. 12 (2013) 2833-2845. http://doi.org/10.1021/pr4001702.

[48]

N.R. Shin, T.W. Whon, J.W. Bae, Proteobacteria: microbial signature of dysbiosis in gut microbiota, Trends Biotechnol. 33 (2015) 496-503. http://doi.org/10.1016/j.tibtech.2015.06.011.

[49]

B.P. Galvão, B.W. Weber, M.S. Rafudeen, et al., Identification of a collagen type I adhesin of Bacteroides fragilis, PLoS One 9 (2014) e91141. http://doi.org/10.1371/journal.pone.0091141.

[50]

F. Del Chierico, V. Nobili, P. Vernocchi, et al., Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach, Hepatology 65 (2017) 451-464. http://doi.org/10.1002/hep.28572.

[51]

D. Wu, L. Liu, N. Jiao, et al., Targeting keystone species helps restore the dysbiosis of butyrate-producing bacteria in nonalcoholic fatty liver disease, iMeta 1 (2022) e61. http://doi.org/https://doi.org/10.1002/imt2.61.

[52]

N. Zhang, B. Qin, Research progress of sodium butyrate in metabolic-associated fatty liver disease, Zhonghua Gan Zang Bing Za Zhi 29 (2021) 1229-1232. http://doi.org/10.3760/cma.j.cn501113-20201113-00614.

[53]

Y. Zhao, M. Li, X. Yao, et al., HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications, Cell Rep. 33 (2020) 108487. http://doi.org/10.1016/j.celrep.2020.108487.

[54]

L. Carneiro, M. Asrih, C. Repond, et al., AMPK activation caused by reduced liver lactate metabolism protects against hepatic steatosis in MCT1 haploinsufficient mice, Mol. Metab. 6 (2017) 1625-1633. http://doi.org/10.1016/j.molmet.2017.10.005.

[55]

A.K. Lee, D.H. Kim, E. Bang, et al., β-Hydroxybutyrate suppresses lipid accumulation in aged liver through GPR109A-mediated signaling, Aging Dis. 11 (2020) 777-790. http://doi.org/10.14336/ad.2019.0926.

[56]

L.F. Wang, X.N. Wang, C.C. Huang, et al., Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway, Lipids Health Dis. 16 (2017) 82. http://doi.org/10.1186/s12944-017-0464-z.

[57]

L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151-1156. http://doi.org/10.1126/science.aao5774.

[58]

K. Pollack, K. Balazs, O. Ogunseitan, Proteomic assessment of caffeine effects on coral symbionts, Environ. Sci. Technol. 43 (2009) 2085-2091. http://doi.org/10.1021/es802617f.

[59]

J.L. Gleason, F. Tekola-Ayele, R. Sundaram, et al., Association between maternal caffeine consumption and metabolism and neonatal anthropometry: a secondary analysis of the NICHD Fetal Growth Studies-Singletons, JAMA Netw. Open 4 (2021) e213238. http://doi.org/10.1001/jamanetworkopen.2021.3238.

[60]

H. Okubo, Y. Miyake, K. Tanaka, et al., Maternal total caffeine intake, mainly from Japanese and Chinese tea, during pregnancy was associated with risk of preterm birth: the Osaka Maternal and Child Health Study, Nutr. Res. 35 (2015) 309-316. http://doi.org/10.1016/j.nutres.2015.02.009.

[61]

L.W. Chen, Y. Wu, N. Neelakantan, et al., Maternal caffeine intake during pregnancy and risk of pregnancy loss: a categorical and dose-response meta-analysis of prospective studies, Public Health Nutr. 19 (2016) 1233-1244. http://doi.org/10.1017/s1368980015002463.

[62]
World Health Organization WHO recommendations on antenatal care for a positive pregnancy experience, World Health Organization, https://www.who.int/publications/i/item/9789241549912.
Food Science and Human Wellness
Pages 3522-3535
Cite this article:
Wang Q, Lu X, Hu W, et al. The gut-liver axis mechanism of increased susceptibility to non-alcoholic fatty disease in female offspring rats with prenatal caffeine exposure. Food Science and Human Wellness, 2024, 13(6): 3522-3535. https://doi.org/10.26599/FSHW.2023.9250035
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return