AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Improved viability of trehalose on Lactobacillus plantarum embedded with whey protein concentrate/pullulan in simulated gastrointestinal conditions and its application in acid juice

Xiujuan Wanga,bHaiyue Suna,bJian WucYu Wanga,bZhiyi Aia,bXinzhu Wanga,bBo Nana,b,dYong Caoa,b,d,eXia Lia,b,d,e( )Jingsheng Liua,b,e( )Yuhua Wanga,b,d,e( )
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
Jilin Provincial Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
Changchun Customs Health Center, Changchun 130033, China
National Processing Laboratory for Soybean Industry and Technology, Changchun 130118, China
National Engineering Research Center for Wheat and Cord Deep Processing, Changchun 130118, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• TRE was used to improve the gastrointestinal tolerance of L. plantarum.

• TRE increased the glass transition temperature of WPC/PUL hydrogel.

• TRE reduced the solubility of WPC/PUL hydrogel in SGJ.

• Application of L. plantarum embedded in WPC/PUL/TRE hydrogel in juice.

Graphical Abstract

Abstract

Trehalose (TRE) was used to improve the gastrointestinal tolerance of Lactobacillus plantarum embedded with whey protein concentrate/pullulan (WPC/PUL) hydrogel and the embedded L. plantarum was applied to juice. The study indicated that 5% TRE significantly increased the viable counts of L. plantarum embedded in WPC/PUL hydrogel from (8.83 ± 0.03) to (9.14 ± 0.04) (lg (CFU/g)) in simulated gastric juice (SGJ) and from (9.13 ± 0.04) to (9.38 ± 0.04) (lg (CFU/g)) in simulated intestinal juice, respectively. The addition of TRE improved the glass transition temperature of WPC/PUL hydrogel and decreased the hardness and its solubility in SGJ, which may be responsible for the improved protection of WPC/PUL hydrogels on L. plantarum. In addition, TRE increased the viable counts of L. plantarum in WPC/PUL probiotic microcapsule juice at low pH and high temperature during storage.

References

[1]

B. Le, S.H. Yang, Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicol. Rep. 5 (2018) 314-317. https://doi.org/10.1016/j.toxrep.2018.02.007.

[2]

M.C. de Vries, E.E. Vaughan, M. Kleerebezem, et al., Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract, Int. Dairy J. 16 (2006) 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003.

[3]

P. Luxananil, R. Promchai, S. Wanasen, et al., Monitoring Lactobacillus plantarum BCC 9546 starter culture during fermentation of Nham, a traditional Thai pork sausage, Int. J. Food Microbiol. 129 (2009) 312-315. https://doi.org/10.1016/j.ijfoodmicro.2008.12.011.

[4]

J.M. Palomino, J.T. del Arbol, N. Benomar, et al., Application of Lactobacillus plantarum Lb9 as starter culture in caper berry fermentation, LWT-Food Sci. Technol. 60 (2014) 788-794. http://dx.doi.org/10.1016/j.lwt.2014.09.061.

[5]

T. Luckow, C. Delahunty, Consumer acceptance of orange juice containing functional ingredients, Food Res, Int. 37 (2004) 805-814. https://doi.org/10.1016/j.foodres.2004.04.003.

[6]

A.E.C. Antunes, A.M. Liserre, A.L.A. Coelho, et al., Acerola nectar with added microencapsulated probiotic, LWT-Food Sci. Technol. 54 (2013) 125-131. http://doi.org/10.1016/j.lwt.2013.04.018.

[7]

P. de Vos, M.M. Faas, M. Spasojevic, et al., Encapsulation for preservation of functionality and targeted delivery of bioactive food components, Int. Dairy J. 20 (2010) 292-302. https://doi.org/10.1016/j.idairyj.2009.11.008.

[8]

Y. Doleyres, C. Lacroix, Technologies with free and immobilised cells for probiotic bifidobacteria production and protection, Int. Dairy J. 15 (2005) 973-988. https://doi.org/10.1016/j.idairyj.2004.11.014.

[9]

Z. Radulovic, N. Mirkovic, B. Bogovic-Matijasic, et al., Quantification of viable spray-dried potential probiotic lactobacilli using real-time PCR, Arch. Biol. Sci. 64 (2012) 1465-1472. https://doi.org/10.2298/ABS1204465R.

[10]

F. Weinbreck, I. Bodnar, M.L. Marco, Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int. J. Food Microbiol. 136 (2010) 364-367. https://doi.org/10.1016/j.ijfoodmicro.2009.11.004.

[11]

D. Rodrigues, S. Sousa, A.M. Gomes, et al., Storage stability of Lactobacillus paracasei as free cells or encapsulated in alginate-based microcapsules in low pH fruit juices, Food Bioprocess Tech. 5 (2011) 2748-2757. https://doi.org/10.1007/s11947-011-0581-z.

[12]

A. Krasaekoopt, W.K. Kitsawad, Sensory characteristics and consumer acceptance of fruit juice containing probiotics beads in Thailand, Aust. J. Technol. 14 (2010) 33-38.

[13]
M. Harel, Q. Tang, Protection and delivery of probiotics for use in foods, in: A.G. Gaonkar, N. Vasisht, A.R. Khare, et al. (Eds.), Microencapsulation in the food industry, Academic Press, 2014, pp. 469-484. http://doi.org/10.1016/B978-0-12-404568-2.00036-4.
[14]

M.B. Perez-Gago, J.M. Krochta, Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films, J. Food Sci. 66 (2001) 705-710. http://doi.org/10.1111/j.1365-2621.2001.tb04625.x.

[15]

S. Tabasum, A. Noreen, M.F. Maqsood, et al., A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers, Int. J. Biol. Macromol. 120 (2018) 603-632. http://doi.org/10.1016/j.ijbiomac.2018.07.154.

[16]

H.Y. Sun, X.M. Hua, M.H. Zhang, et al., Whey protein concentrate, pullulan, and trehalose as thermal protective agents for increasing viability of Lactobacillus plantarum starter by spray drying, Food Sci. Anim. Resour 40 (2020) 118-131. http://doi.org/10.5851/kosfa.2019.e94.

[17]

M.H. Zhang, D. Cai, Q.M. Song, et al., Effect on viability of microencapsulated Lactobacillus rhamnosus with the whey protein-pullulan gels in simulated gastrointestinal conditions and properties of gels, Food Sci. Anim. Resour 39 (2019) 459-473. http://doi.org/10.5851/kosfa.2019.e42.

[18]

M.S. Álvarez Cerimedo, M. Cerdeira, R.J. Candal, et al., Microencapsulation of a low-trans fat in trehalose as affected by emulsifier type, J. Am. Oil Chem. Soc. 85 (2008) 797-807. http://doi.org/10.1007/s11746-008-1267-1.

[19]

A. Nag, S. Das, Effect of trehalose and lactose as cryoprotectant during freeze-drying, in vitro gastro-intestinal transit and survival of microencapsulated freeze-dried Lactobacillus casei 431 cells, Int. J. Dairy Technol. 66 (2013) 162-169. http://doi.org/10.1111/1471-0307.12041.

[20]

H.Y. Sun, M.H. Zhang, Y.K. Liu, et al., Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying, Carbohydr Polym. 260 (2021) 117843. https://doi.org/10.1016/j.carbpol.2021.117843.

[21]

Y.K. Liu, H.Y. Sun, J. Zhang, et al., Whey protein concentrate/pullulan gel as a novel microencapsulated wall material for astaxanthin with improving stability and bioaccessibility, Food Hydrocoll. 138 (2023) 108467. https://doi.org/10.1016/j.foodhyd.2023.108467.

[22]

M.H. Zhang, H.Y. Sun, Y. Wang, et al., Preparation and characterization of a novel porous whey protein concentrate/pullulan gel induced by heating for Cu2+ absorption. Food Chem. 322 (2020) 126772. https://doi.org/10.1016/j.foodchem.2020.126772.

[23]

C. Gebara, K.S. Chaves, M.C.E. Ribeiro, et al., Viability of Lactobacillus acidophilus La5 in pectin-whey protein microparticles during exposure to simulated gastrointestinal conditions, Food Res. Int. 51 (2013) 872-878. http://doi.org/10.1016/j.foodres.2013.02.008.

[24]

X.J. Wang, Y.Y. Zhang, Y.B. Li, et al., Insoluble dietary fibre from okara (soybean residue) modified by yeast Kluyveromyces marxianus, LWT-Food Sci. Technol. 134 (2020) 110252. https://doi.org/10.1016/j.lwt.2020.110252.

[25]

M.H. Zhang, H.Y. Sun, Y.K. Liu, et al., Effect of pullulan concentration and pH on the interactions between whey protein concentrate and pullulan during gelation, J. Sci. Food Agric. 101 (2020) 659-665. https://doi.org/10.1002/jsfa.10678.

[26]

Q, Wang, W.Y, Chen, B.Y. Zhang, et al., Perfluorooctanoic acid induces hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro via endoplasmic reticulum-mitochondria communication, Chem-Biol. Int. 354 (2022) 109844. https://doi.org/10.1016/j.cbi.2022.109844.

[27]

J.M. Wood, Bacterial responses to osmotic challenges, J. Gen.Physiol. 145 (2015) 381-388. https://doi.org/10.1085/jgp.201411296.

[28]

P.H. Yancey, Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses, J. Exp. Biol. 208 (2005) 2819-2830. https://doi.org/10.1242/jeb.01730.

[29]

T. Qin, Q. Ma, H. Chen, et al., Effect of four materials including trehalose, soluble starch, raffinose and galactose on survival of Lactobacillus acidophilus during freeze-drying, International Conference on Advanced Research on Advanced Structure, Materials and Engineering (2013) 259-262.

[30]

A.K. Anal, H. Singh, Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery, Trends Food Sci. Technol. 18 (2007) 240-251. https://doi.org/10.1016/j.tifs.2007.01.004.

[31]

X.P. Shen, Y.J. Xie, Q.W. Wang, et al., Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin, Cellulose 26 (2019) 4005-4019. https://doi.org/10.1007/s10570-019-02328-w.

[32]

C. Santivarangkna, M. Aschenbrenner, U. Kulozik, et al., Role of glassy state on stabilities of freeze-dried probiotics, J. Food Sci. 76 (2011) 152-156. https://doi.org/10.1111/j.1750-3841.2011.02347.x.

[33]

B.C. Hancock, S.L. Shamblin, G. Zografi, Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures, Pharm. Res. 12 (1995) 799-806.

[34]

A. Schoug, D. Mahlin, M. Jonson, et al., Differential effects of polymers PVP90 and Ficoll400 on storage stability and viability of Lactobacillus coryniformis Si3 freeze-dried in sucrose, J. Appl. Microbiol. 108 (2010) 1032-1040. https://doi.org/10.1111/j.1365-2672.2009.04506.x.

[35]

K.N. Ryan, Q. Zhong, E.A. Foegeding, Use of whey protein soluble aggregates for thermal stability-a hypothesis paper, J. Food Sci. 78 (2013) 1105-1115. https://doi.org/10.1111/1750-3841.12207.

[36]

A.D. Elbein, Y.T. Pan, I. Pastuszak, et al., New insights on trehalose: a multifunctional molecule, Glycobiology 13 (2003) 17R-27R. https://doi.org/10.1093/glycob/cwg047.

[37]

I. Doymaz, Drying characteristics and kinetics of okra, J. Food Eng. 69 (2005) 275-279. https://doi.org/10.1016/j.jfoodeng.2004.08.019.

[38]

M.D.A. Etchepare, G.C. Raddatz, A.J. Cichoski, et al., Effect of resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate, J. Funct. Foods 21 (2016) 321-329. http://doi.org/10.1016/j.jff.2015.12.025.

[39]

B.M. Corcoran, R.P. Ross, G.F. Fitzgerald, et al., Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances, J. Appl. Microbiol. 96 (2004) 1024-1039. https://doi.org/10.1111/j.1365-2672.2004.02219.x.

[40]

D.Y. Ying, S. Schwander, R. Weerakkody, et al., Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch, J. Funct. Foods 5 (2013) 98-105. http://doi.org/10.1016/j.jff.2012.08.009.

[41]

J.Y. Kim, M.Y. Lee, G.E. Ji, et al., Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100, Int. J. Food Microbiol. 130 (2009) 12-16. https://doi.org/10.1016/j.ijfoodmicro.2008.12.028.

[42]

M. Zhao, F.N. Qu, Z.J. Wu, et al., Protection mechanism of alginate microcapsules with different mechanical strength for Lactobacillus plantarum ST-Ⅲ, Food Hydrocoll. 66 (2017) 396-402. http://doi.org/10.1016/j.foodhyd.2016.12.013.

Food Science and Human Wellness
Pages 3614-3623
Cite this article:
Wang X, Sun H, Wu J, et al. Improved viability of trehalose on Lactobacillus plantarum embedded with whey protein concentrate/pullulan in simulated gastrointestinal conditions and its application in acid juice. Food Science and Human Wellness, 2024, 13(6): 3614-3623. https://doi.org/10.26599/FSHW.2023.9250043

287

Views

14

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 February 2023
Revised: 26 March 2023
Accepted: 25 April 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return