PDF (7.2 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Tables (3)
Table 1
Table 2
Table 3
Open Access

Dendrobium officinale flowers flavonoids enriched extract protects against acute ethanol-induced gastric ulcers via AMPK/PI3K signaling pathways

Zhiyu ZhangaHualing XieaMohamed A. FaragbZhenhao LicQingping WudPing Shaoa,e()
Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 12613, Egypt
Zhejiang ShouXianGu Botanical Drug Institute Co., Ltd., Hangzhou 321200, China
Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
Eco-Industrial Innovation Institute Zhejiang University of Technology, Quzhou 324000, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

Dendrobium officinale flowers flavonoids (DOFF) prevent alcoholic gastric ulcers through antioxidant and regulates autophagy.

• DOFF (< 640 μg/mL) showed no toxicity effect on GES-1 cells with protective effect in ethanol damage model.

• DOFF regulates autophagy through AMPK/mTOR/ULK1 and PI3K/AKT signaling pathways.

Graphical Abstract

View original image Download original image

Abstract

Gastric ulcer is a widespread disease caused by various etiologies. Dendrobium officinale flowers exert several health benefits owing to their rich flavonoid content. In this study, protective effects and possible action mechanisms of D. officinale flowers’ flavonoid enriched extract (DOFF) were assessed against gastric ulcer. The result of sodium nitrite-aluminum nitrate colorimetry showed that 52.34% of the total extractive was flavonoid, and ultra-high performance liquid chromatography time of flight mass spectrometer (UPLC-Q-TOF/MS) revealed the presence of 28 components in DOFF of which 14 belonged to flavonoids. In addition, in vivo assay revealed DOFF potential in reducing the formation of ethanol-induced gastric mucosal lesions, with drop-in ulcer index from 64.33 ± 8.76 to 32.00 ± 4.47. Similar results were revealed in human gastric mucosal epithelia cells, with cells viability to increase from 27.2% to 61.6% post DOFF administration. To analyzed the protect effect of DOFF, we used Western blotting and immunofluorometric assay to revealed the expression levels of key proteins in cell pathways. The results showed that DOFF (320 μg/mL) could increase the level of oxidation marker protein (HO-1), apoptosis regulatory protein (Bcl-2) and autophagy marker (LC3β) by 50.84%, 43.85%, and 59.21% compared with ethanol-treated group respectively. Further analyzed of the mitochondrial activity and apoptosis pathway, we found that DOFF appeared to mitigate against ethanol-induced gastric mucosal injury via AMPK/mTOR/ULK1 and PI3K/AKT autophagy signaling pathways.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3661_ESM.docx (68.5 KB)

References

[1]

R.M. Aman, R.A. Zaghloul, M.S. El-Dahhan, Formulation, optimization and characterization of allantoin-loaded chitosan nanoparticles to alleviate ethanol-induced gastric ulcer: in-vitro and in-vivo studies, Sci. Rep. 11(1) (2021) 2216. https://doi.org/10.1038/s41598-021-81183-x.

[2]

C. Harsha, K. Banik, D. Bordoloi, et al., Antiulcer properties of fruits and vegetables: a mechanism based perspective, Food Chem. Toxicol. 108 (2017) 104-119. https://doi.org/10.1016/j.fct.2017.07.023.

[3]

R.Q. Yang, H. Mao, L.Y. Huang, et al., Effects of hydrotalcite combined with esomeprazole on gastric ulcer healing quality: a clinical observation study, World J. Gastroenterol. 23(7) (2017) 1268-1277. https://doi.org/10.3748/wjg.v23.i7.1268.

[4]

B. Liu, X. Feng, J. Zhang, et al., Preventive effect of Anji White tea flavonoids on alcohol-induced gastric injury through their antioxidant effects in kunming mice, Biomol. 9(4) (2019) 137. https://doi.org/10.3390/biom9040137.

[5]

J.L. Wallace, Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol. Rev. 88(4) (2008) 1547-1565. https://doi.org/10.1152/physrev.00004.2008.

[6]

X. Piao, S. Li, X. Sui, et al., 1-Deoxynojirimycin (DNJ) Ameliorates indomethacin-induced gastric ulcer in mice by affecting NF-kappaB signaling pathway, Front. Pharmacol. 9 (2018) 372. https://doi.org/10.3389/fphar.2018.00372.

[7]

X. Chang, F. Luo, W. Jiang, et al., Protective activity of salidroside against ethanol-induced gastric ulcer via the MAPK/NF-κB pathway in vivo and in vitro, Int. Immunopharmacol. 28(1) (2015) 604-615. https://doi.org/10.1016/j.intimp.2015.07.031.

[8]

E. Yuan, Y. Lian, Q. Li, et al., Roles of Adinandra nitida (Theaceae) and camellianin A in HCl/ethanol-induced acute gastric ulcer in mice, Food Sci. Hum. Wellness 11(4) (2022) 1053-1063. https://doi.org/10.1016/j.fshw.2022.03.032.

[9]
M. Abebaw, B. Mishra, D.A. Gelayee, Evaluation of anti-ulcer activity of the leaf extract of Osyris quadripartita Decne.(Santalaceae) in rats, J. Exp. Pharmacol. 9 (2017) 1-11. https://doi.org/10.2147%2FJEP.S125383.
[10]

A.I. Elshamy, A.R.H. Farrag, I.M. Ayoub, et al., UPLC-qTOF-MS phytochemical profile and antiulcer potential of Cyperus conglomeratus Rottb. alcoholic extract, Molecules 25(18) (2020) 4234. https://doi.org/10.3390/molecules25184234.

[11]

L. Yan, X. Wang, H. Liu, et al., The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb, Mol. Plant 8(6) (2015) 922-934. https://doi.org/10.1016/j.molp.2014.12.011.

[12]

S.G. Zheng, Y.D. Hu, R.X. Zhao, et al., Genome-wide researches and applications on Dendrobium, Planta 248(4) (2018) 769-784. https://doi.org/10.1007/s00425-018-2960-4.

[13]

T. Zhao, S. Zheng, Y. Hu, et al., Classification of interspecific and intraspecific species by genome-wide SSR markers on Dendrobium, S. Afr. J. Bot. 127 (2019) 136-146. https://doi.org/10.1016/j.sajb.2019.08.051.

[14]

T. Takamiya, P. Wongsawad, N. Tajima, et al., Identification of Dendrobium species used for herbal medicines based on ribosomal DNA internal transcribed spacer sequence, Biol. Pharm. Bull. 34(5) (2011) 779-782. https://doi.org/10.1248/bpb.34.779.

[15]

G.Y. Lv, M.Q. Yan, S.H. Chen, Review of pharmacological activities of Dendrobium officinale based on traditional functions, China J. Chin. Mater Med. 38(4) (2013) 489-493.

[16]

Y. Lam, T.B. Ng, R.M. Yao, et al., Evaluation of chemical constituents and important mechanism of pharmacological biology in Dendrobium plants, Evid. Based. Complement. Alternat. Med. 2015 (2015) 1-25. https://doi.org/10.1155/2015/841752.

[17]

T.B. He, Y.P. Huang, L. Yang, et al., Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale, Int. J. Biol. Macromol. 83 (2016) 34-41. https://doi.org/10.1016/j.ijbiomac.2015.11.038.

[18]

H. Tang, T. Zhao, Y. Sheng, et al., Dendrobium officinale Kimura et Migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization, Evid. Based. Complement. Alternat. Med. 2017 (2017) 1-19. https://doi.org/10.1155/2017/7436259.

[19]

J.A. Teixeira da Silva, E.A. Tsavkelova, S. Zeng, et al., Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development, Planta 242(1) (2015) 1-22. https://doi.org/10.1007/s00425-015-2301-9.

[20]

M. Zhao, J. Fan, Q. Liu, et al., Phytochemical profiles of edible flowers of medicinal plants of Dendrobium officinale and Dendrobium devonianum, Food Sci. Nutr. 9(12) (2021) 6575-6586. https://doi.org/10.1002/fsn3.2602.

[21]

J. Zhang, Z. Fu, Z. Chu, et al., Gastroprotective activity of the total flavones from Abelmoschus manihot (L.) medic flowers, Evid. Based Complement. Alternat. Med. 2020 (2020) 6584945. https://doi.org/10.1155/2020/6584945.

[22]

Q. Zeng, C.H. Ko, W.S. Siu, et al., Polysaccharides of Dendrobium officinale Kimura & Migo protect gastric mucosal cell against oxidative damage-induced apoptosis in vitro and in vivo, J. Ethnopharmacol. 208 (2017) 214-224. https://doi.org/10.1016/j.jep.2017.07.006.

[23]

Z. Rahman, D. Dwivedi, G. Jena, Ethanol-induced gastric ulcer in rats and intervention of tert-butylhydroquinone: involvement of Nrf2/HO-1 signalling pathway, Hum. Exp. Toxicol. 39(4) (2020) 547-562. https://doi.org/10.1177/0960327119895559.

[24]

M. Kanter, O. Coskun, H. Uysal, The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage, Arch. Toxicol. 80 (2006) 217-224. https://doi.org/10.1007/s00204-005-0037-1.

[25]

D. Dokmeci, M. Akpolat, N. Aydogdu, et al., L-Carnitine inhibits ethanol-induced gastric mucosal injury in rats, Pharmacol. Rep. 57(4) (2005) 481-488.

[26]

Y. Yang, B. Yin, L. Lv, et al., Gastroprotective effect of aucubin against ethanol-induced gastric mucosal injury in mice, Life Sci. 189 (2017) 44-51. https://doi.org/10.1016/j.lfs.2017.09.016.

[27]

R. Al Batran, F. Al-Bayaty, M.M. Jamil Al-Obaidi, et al., In vivo antioxidant and antiulcer activity of Parkia speciosa ethanolic leaf extract against ethanol-induced gastric ulcer in rats, PLoS ONE 8(5) (2013) e64751. https://doi.org/10.1371/journal.pone.0064751.

[28]

S. Yamamoto, K. Watabe, H. Araki, et al., Protective role of adiponectin against ethanol-induced gastric injury in mice, Am. J. Physiol.Gastrointest. Liver Physiol. 302(8) (2012) G773-G780. https://doi.org/10.1152/ajpgi.00324.2011.

[29]

H.H. Ye, K.J. Wu, S.J. Fei, et al., Propofol participates in gastric mucosal protection through inhibiting the toll-like receptor-4/nuclear factor kappa-B signaling pathway, Clin. Res. Hepatol. Gastroenterol. 37(1) (2013) e3-e15. https://doi.org/10.1016/j.clinre.2012.03.004.

[30]

W. Chang, J. Bai, S. Tian, et al., Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway, Exp. Biol. Med. 242(10) (2017) 1025-1033. https://doi.org/10.1177/1535370216686221.

[31]

D. Wu, A.I. Cederbaum, Inhibition of autophagy promotes CYP2E1-dependent toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and activation of p38 and JNK MAPK, Redox Biol. 1(1) (2013) 552-565. https://doi.org/10.1016/j.redox.2013.10.008.

[32]

Y. Ke, L. Zhan, T. Lu, et al., Polysaccharides of Dendrobium officinale Kimura & Migo leaves protect against ethanol-induced gastric mucosal injury via the AMPK/mTOR signaling pathway in vitro and vivo, Front. Pharmacol. 11 (2020) 526349. https://doi.org/10.3389/fphar.2022.948569.

[33]

H.H. Arab, A.M. Ashour, A.M. Gad, et al., Activation of AMPK/mTOR-driven autophagy and inhibition of NLRP3 inflammasome by saxagliptin ameliorate ethanol-induced gastric mucosal damage, Life Sci. 280 (2021) 119743. https://doi.org/10.1016/j.lfs.2021.119743.

[34]

Q. He, M. Liu, Z. Rong, et al., Rebamipide attenuates alcohol-induced gastric epithelial cell injury by inhibiting endoplasmic reticulum stress and activating autophagy-related proteins, Eur. J. Pharmacol. 922 (2022) 174891. https://doi.org/10.1016/j.ejphar.2022.174891.

[35]

W. Cao, J. Li, K. Yang, et al., An overview of autophagy: mechanism, regulation and research progress, Bull. Cancer. 108(3) (2021) 304-322. https://doi.org/10.1016/j.bulcan.2020.11.004.

[36]

L. Gong, Q. Pan, N. Yang, Autophagy and inflammation regulation in acute kidney injury, Front. Physiol. 11 (2020) 576463. https://doi.org/10.3389/fphys.2020.576463.

[37]

Z. Xu, X. Han, D. Ou, et al., Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy, Appl. Microbiol. Biotechnol. 104(2) (2020) 575-587. https://doi.org/10.1007/s00253-019-10257-8.

[38]

C. Cao, W. Huang, N. Zhang, et al., Narciclasine induces autophagy-dependent apoptosis in triple-negative breast cancer cells by regulating the AMPK-ULK1 axis, Cell Prolif. 51(6) (2018) e12518. https://doi.org/10.1111/cpr.12518.

[39]

T. Kimura, A. Takahashi, Y. Takabatake, et al., Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress, Autophagy 9(11) (2013) 1876-1886. https://doi.org/10.4161/auto.25418.

[40]

C.Y. Chen, H.C. Hsu, M.F. Chen, The reduced autophagic response by oxidative stress in angiotensin Ⅱ-induced hypertrophic H9C2 cells causes more apoptotic cell death, Exp. Biol. Med. 239(12) (2014) 1688-1698. https://doi.org/10.1177/1535370214542071.

[41]

Z. Luo, Z. Guo, T. Xiao, et al., Enrichment of total flavones and licochalcone A from licorice residues and its hypoglycemic activity, J. Chromatogr. B 1114-1115 (2019) 134-145. https://doi.org/10.1016/j.jchromb.2019.01.026.

[42]

X. Ruan, L.M. Zhan, X.X. Gao, et al., Separation and purification of flavonoid from Taxus remainder extracts free of taxoids using polystyrene and polyamide resin, J. Sep. Sci. 36(12) (2013) 1925-1934. https://doi.org/10.1002/jssc.201201189.

[43]

X.M. Liu, Y. Liu, C.H. Shan, et al., Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube, Food Chem.: X 14 (2022) 100287. https://doi.org/10.1016/j.fochx.2022.100287.

[44]

X.Q. Zhao, S. Guo, H. Yan, et al., Analysis of phenolic acids and flavonoids in leaves of Lycium barbarum from different habitats by ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry, Biomed. Chromatogr. 33(8) (2019) e4552. https://doi.org/10.1002/bmc.4552.

[45]

Y.M. Belayneh, G.G. Amare, B.G. Meharie, et al., Evaluation of the antiulcerogenic activity of hydromethanol extracts of Solanum incanum L.(Solanaceae) leaves and roots in mice; single and repeated dose study, Metab. Open 11 (2021) 100119. https://doi.org/10.1016/j.metop.2021.100119.

[46]

O.J. Olatunji, H. Chen, Y. Zhou, Anti-ulcerogenic properties of Lycium chinense mill extracts against ethanol-induced acute gastric lesion in animal models and its active constituents, Molecules 20(12) (2015) 22553-22564. https://doi.org/10.3390/molecules201219867.

[47]

K. Lin, Y. Wang, J. Gong, et al., Protective effects of total flavonoids from Alpinia officinarum rhizoma against ethanol-induced gastric ulcer in vivo and in vitro, Pharm. Biol. 58(1) (2020) 854-862. https://doi.org/10.1080/13880209.2020.1803370.

[48]

P. Guth, D. Aures, G. Paulsen, Topical aspirin plus HCl gastric lesions in the rat: cytoprotective effect of prostaglandin, cimetidine, and probanthine, Gastroenterol 76(1) (1979) 88-93. https://doi.org/10.1016/S0016-5085(79)80133-X.

[49]

E. Gugliandolo, M. Cordaro, R. Fusco, et al., Protective effect of snail secretion filtrate against ethanol-induced gastric ulcer in mice, Sci. Rep. 11(1) (2021) 3638. https://doi.org/10.1038/s41598-021-83170-8.

[50]

R. Naz, Z. Ahmed, M. Shahzad, et al., Amelioration of rheumatoid arthritis by Anacardium occidentale via inhibition of collagenase and lysosomal enzymes, Evid. Based. Complement. Alternat. Med. 2020 (2020) 8869484. https://doi.org/10.1155/2020/8869484.

[51]

N. Nordin, S.M. Salama, S. Golbabapour, et al., Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models, PLoS ONE 9(11) (2014) e111925. https://doi.org/10.1371/journal.pone.0111925.

[52]

J. Sedlak, R.H. Lindsay, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent, Anal. Biochem. 25 (1968) 192-205. https://doi.org/10.1016/0003-2697(68)90092-4.

[53]

Y. Wang, X. Liu, L. Liang, et al., The protective effect of quinoa on the gastric mucosal injury induced by absolute ethanol, J. Sci. Food Agric. (2022). https://doi.org/10.1002/jsfa.12208.

[54]

B. Liao, C. Zhou, T. Liu, et al., A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells, Int. J. Biol. Macromol. 154 (2020) 1460-1470. https://doi.org/10.1016/j.ijbiomac.2019.11.027.

[55]

S. Fang, X. Wan, X. Zou, et al., Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway, Cell Death Dis. 12(1) (2021) 1-18. https://doi.org/10.1038/s41419-020-03357-1.

[56]

X.J. Luo, B. Liu, Z. Dai, et al., Expression of apoptosis-associated microRNAs in ethanol-induced acute gastric mucosal injury via JNK pathway, Alcohol 47(6) (2013) 481-493. https://doi.org/10.1016/j.alcohol.2013.05.005.

[57]

E.L. McConnell, A.W. Basit, S. Murdan, Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments, J. Pharm. Pharmacol. 60(1) (2008) 63-70. https://doi.org/10.1211/jpp.60.1.0008.

[58]

M. Beiranvand, S. Bahramikia, Ameliorating and protective effects mesalazine on ethanol-induced gastric ulcers in experimental rats, Eur. J. Pharmacol. 888 (2020) 173573. https://doi.org/10.1016/j.ejphar.2020.173573.

[59]

C. Zhang, F. Gao, S. Gan, et al., Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from Bletilla striata against ethanol-induced acute gastric ulcer, Food Chem. Toxicol. 131 (2019) 110539. https://doi.org/10.1016/j.fct.2019.05.047.

[60]

P.C. Gupta, A. Kar, N. Sharma, et al., Protective effect of standardised fruit extract of Garcinia cowa Roxb. ex Choisy against ethanol induced gastric mucosal lesions in Wistar rats, Ann. Med. 53(1) (2021) 1696-1708. https://doi.org/10.1080/07853890.2021.1981548.

[61]

H.L. Wu, X. Gao, Z.D. Jiang, et al., Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation, Toxicol. 304 (2013) 41-48. https://doi.org/10.1016/j.tox.2012.11.020.

[62]

W.C. Zhao, Y.S. Xu, G. Chen, et al., Veronicastrum axillare alleviates ethanol-induced injury on gastric epithelial cells via downregulation of the NF-κB signaling pathway, Gastroenterol. Res. Pract. 2017 (2017) 7395032. https://doi.org/10.1155/2017/7395032.

[63]

T.Y. Wu, J. Liang, J.Y. Ai, et al., Mulberry ethanol extract and rutin protect alcohol-damaged GES-1 cells by inhibiting the MAPK pathway, Molecules 27(13) (2022) 4266. https://doi.org/10.3390/molecules27134266.

[64]

Q. Li, Z. Dong, W. Lian, et al., Ochratoxin A causes mitochondrial dysfunction, apoptotic and autophagic cell death and also induces mitochondrial biogenesis in human gastric epithelium cells, Arch. Toxicol. 93(4) (2019) 1141-1155. https://doi.org/10.1007/s00204-019-02433-6.

[65]

L. Wang, X. Li, Z. Yang, et al., Crotonaldehyde induces autophagy-mediated cytotoxicity in human bronchial epithelial cells via PI3K, AMPK and MAPK pathways, Environ Pollut. 228 (2017) 287-296. https://doi.org/10.1016/j.envpol.2017.03.083.

[66]

D.J. Stewart, R. Ackroyd, Peptic ulcers and their complications, Surgery 29(11) (2011) 568-574. https://doi.org/10.1016/j.mpsur.2011.08.006.

[67]

P.A. Rodrigues, S.M. Morais, C.M. Souza, et al., Gastroprotective effect of Byrsonima sericea DC leaf extract against ethanol-induced gastric injury and its possible mechanisms of action, An. Acad. Bras. Cienc. 84 (2012) 113-122. https://doi.org/10.1590/S0001-37652012000100011.

[68]

S. Murugesu, J. Selamat, V. Perumal, Phytochemistry, pharmacological properties, and recent applications of Ficus benghalensis and Ficus religiosa, Plants 10(12) (2021) 2749. https://doi.org/10.3390/plants10122749.

[69]

A.A. Mariyam, R. Isaac, P. Praseetha, Phytochemical profile and pharmacognistic properties of adhatoda species: a review, Adv. Sci. Eng. Med. 8(9) (2016) 669-675. https://doi.org/10.1166/asem.2016.1898.

[70]

M. Indran, A. Mahmood, U. Kuppusamy, Protective effect of Carica papaya L. leaf extract against alcohol induced acute gastric damage and blood oxidative stress in rats, West Indian Med. J. 57(4) (2008) 323-326.

[71]

P.P. Lowe, B. Gyongyosi, A. Satishchandran, et al., Correction: Alcohol-related changes in the intestinal microbiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice, PLoS ONE 12(3) (2017) e0174544. https://doi.org/10.1371/journal.pone.0174544.

[72]

W. Li, X. Wang, W. Zhi, et al., The gastroprotective effect of nobiletin against ethanol-induced acute gastric lesions in mice: impact on oxidative stress and inflammation, Immunopharmacol. Immunotoxicol. 39(6) (2017) 354-363. https://doi.org/10.1080/08923973.2017.1379088.

[73]

C. Yu, X.T. Mei, Y.P. Zheng, et al., Gastroprotective effect of taurine zinc solid dispersions against absolute ethanol-induced gastric lesions is mediated by enhancement of antioxidant activity and endogenous PGE2 production and attenuation of NO production, Eur. J. Pharmacol. 740 (2014) 329-336. https://doi.org/10.1016/j.ejphar.2014.07.014.

[74]

D. Gazzieri, M. Trevisani, J. Springer, et al., Substance P released by TRPV1-expressing neurons produces reactive oxygen species that mediate ethanol-induced gastric injury, Free Radical Biol. Med. 43(4) (2007) 581-589. https://doi.org/10.1016/j.freeradbiomed.2007.05.018.

[75]

S. Qin, J. Yin, S. Huang, et al., Astragaloside IV protects ethanol-induced gastric mucosal injury by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway apoptosis in rats, Front. Pharmacol. 10 (2019) 894. https://doi.org/10.3389/fphar.2019.00894.

[76]

H. Wang, Y. Chen, N. Zhai, et al., Ochratoxin A-induced apoptosis of IPEC-J2 cells through ROS-mediated mitochondrial permeability transition pore opening pathway, J. Agric. Food Chem. 65(48) (2017) 10630-10637. https://doi.org/10.1021/acs.jafc.7b04434.

[77]

A. Kumari, P. Kakkar, Lupeol prevents acetaminophen-induced in vivo hepatotoxicity by altering the Bax/Bcl-2 and oxidative stress-mediated mitochondrial signaling cascade, Life Sci. 90(15/16) (2012) 561-570. https://doi.org/10.1016/j.lfs.2012.01.012.

[78]

D.R. Green, F. Llambi, Cell death signaling, Cold Spring Harbor Perspect. Biol. 7(12) (2015) a006080. https://doi.org/10.1101/cshperspect.a006080.

[79]

M.L. Würstle, M.A. Laussmann, M. Rehm, The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome, Exp. Cell Res. 318(11) (2012) 1213-1220. https://doi.org/10.1016/j.yexcr.2012.02.013.

[80]

M.C. Maiuri, E. Zalckvar, A. Kimchi, et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis, Nat. Rev. Mol. Cell Biol. 8(9) (2007) 741-752. https://doi.org/10.1038/nrm2239.

[81]

S.Y. Lu, S. Guo, S.B. Chai, et al., Autophagy in gastric mucosa: the dual role and potential therapeutic target, BioMed Res. Int. 2021 (2021) 2648065. https://doi.org/10.1155/2021/2648065.

[82]

A.K. Abdel-Aziz, C. Stalling, C.K. Tong, Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition), Autophagy 17(1) (2021) 1-382. https://doi.org/10.1080/15548627.2020.1797280.

[83]

K. Hou, Q. Yu, X. Hu, et al., Protective effect of Ganoderma atrum polysaccharide on acrolein-induced macrophage injury via autophagy-dependent apoptosis pathway, Food Chem. Toxicol. 133 (2019) 110757. https://doi.org/10.1016/j.fct.2019.110757.

[84]

D. Egan, J. Kim, R.J. Shaw, et al., The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR, Autophagy 7(6) (2011) 643-644. https://doi.org/10.4161/auto.7.6.15123.

[85]

D. Park, H. Jeong, M.N. Lee, et al., Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition, Sci. Rep. 6 (2016) 21772. https://doi.org/10.1038/srep21772.

[86]

W.Q. Cao, X.Q. Zhai, J.W. Ma, et al., Natural borneol sensitizes human glioma cells to cisplatin-induced apoptosis by triggering ROS-mediated oxidative damage and regulation of MAPKs and PI3K/AKT pathway, Pharm. Biol. 58(1) (2020) 72-79. https://doi.org/10.1080/13880209.2019.1703756.

[87]

S. Ren, Y. Wei, R. Wang, et al., Rutaecarpine ameliorates ethanol-induced gastric mucosal injury in mice by modulating genes related to inflammation, oxidative stress and apoptosis, Front. Pharmacol. 11 (2020) 600295. https://doi.org/10.3389/fphar.2020.600295.

[88]

H.H. Arab, S.A. Salama, A.H. Eid, et al., Targeting MAPKs, NF-κB, and PI3K/AKT pathways by methyl palmitate ameliorates ethanol-induced gastric mucosal injury in rats, J. Cell. Physiol. 234(12) (2019) 22424-22438. https://doi.org/10.1002/jcp.28807.

[89]

W.T. Jeong, H.B. Lim, Determination and chemical profiling of toxic pyrrolizidine alkaloids in botanical samples with UPLC-Q-TOFMS, Chromatographia 82(11) (2019) 1653-1664. https://doi.org/10.1007/s10337-019-03785-y.

[90]

J. Yang, X. Dong, X.T. Zhen, et al., Rapid analysis and identification of flavonoid and organic acid metabolites in Hawthorn using an on-line flow injection assisted electrochemical microreactor combined with quadrupole time-of-flight tandem mass spectrometry, J. Food Compost. Anal. 96 (2021) 103700. https://doi.org/10.1016/j.jfca.2020.103700.

[91]

Y.B. Cheng, M.T. Chang, Y.W. Lo, et al., Oxygenated lignans from the fruits of Schisandra arisanensis, J. Nat. Prod. 72(9) (2009) 1663-1668. https://doi.org/10.1021/np9003678.

[92]

M. Sui, S. Feng, G. Liu, et al., Deep eutectic solvent on extraction of flavonoid glycosides from Dendrobium officinale and rapid identification with UPLC-triple-TOF/MS, Food Chem. 401 (2023) 134054. https://doi.org/10.1016/j.foodchem.2022.134054.

[93]

Z. Ye, J.R. Dai, C.G. Zhang, et al., Chemical differentiation of Dendrobium officinale and Dendrobium devonianum by using HPLC fingerprints, HPLC-ESI-MS, and HPTLC analyses, Evid. Based. Complement. Alternat. Med. 2017 (2017) 9. https://doi.org/10.1155/2017/8647212.

[94]

C.B.B. Cazarin, A. Rodriguez-Nogales, F. Algieri, et al., Intestinal anti-inflammatory effects of Passiflora edulis peel in the dextran sodium sulphate model of mouse colitis, J. Funct. Foods 26 (2016) 565-576. https://doi.org/10.1016/j.jff.2016.08.020.

[95]

J. Wan, X. Gong, F. Wang, et al., Comparative analysis of chemical constituents by HPLC-ESI-MSn and antioxidant activities of Dendrobium huoshanense and Dendrobium officinale, Biomed. Chromatogr. 36(1) (2022) e5250. https://doi.org/10.1002/bmc.5250.

[96]

Y. Tao, H. Cai, W. Li, et al., Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale, Anal. Bioanal. Chem. 407 (2015) 6081-6093. https://doi.org/10.1007/s00216-015-8781-4.

[97]

M. Li, Z.Y. Huang, S.S. Cui, et al., Characterization of chemical components and the potential anti-influenza mechanism of Fructus Arctii by a strategy integrating pharmacological evaluations, chemical profiling, serum pharmacochemistry, and network pharmacology, New J. Chem. 46(38) (2022) 18426-18446. https://doi.org/10.1039/D2NJ02799B.

[98]

M.A. Farag, D.M. Rasheed, M. Kropf, et al., Metabolite profiling in Trigonella seeds via UPLC-MS and GC-MS analyzed using multivariate data analyses, Anal. Bioanal. Chem. 408 (2016) 8065-8078. https://doi.org/10.1007/s00216-016-9910-4.

[99]

G.N.d.M. e Silva, E.S.B. Rodrigues, I.Y.L. de Macêdo, et al., Blackberry jam fruit (Randia formosa (Jacq.) K. Schum): an Amazon superfruit with in vitro neuroprotective properties, Food Biosci. 50 (2022) 102084. https://doi.org/10.1016/j.fbio.2022.102084.

[100]

Q. Li, T. Lan, S. He, et al., A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model, Chin. Med. 16(1) (2021) 1-21. https://doi.org/10.1186/s13020-021-00507-1.

Food Science and Human Wellness
Pages 3661-3679
Cite this article:
Zhang Z, Xie H, Farag MA, et al. Dendrobium officinale flowers flavonoids enriched extract protects against acute ethanol-induced gastric ulcers via AMPK/PI3K signaling pathways. Food Science and Human Wellness, 2024, 13(6): 3661-3679. https://doi.org/10.26599/FSHW.2023.9250048
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return