PDF (5.3 MB)
Collect
Submit Manuscript
Open Access

Identification and analysis of immunological activity of two isoforms of tropomyosin in Alectryonella plicatula

Shiqiang YangaYexin ChenaFei HuanaXinrong HeaXiao YunaHong LiuaGuixia ChenbGuangming Liua,c ()
College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China
Women and Children’s Hospital Affi liated to Xiamen University, Xiamen 361003, China
College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Two tropomyosin isoforms were identified as allergen in Alectryonella plicatula.

• The immunological activity of TM-β were significantly higher than that of TM-α.

• High α-helix content is the key to high immunological activity.

• The amino acids of TM-β were more similar to the epitopes of shellfish TMs.

Graphical Abstract

View original image Download original image

Abstract

Oyster, as a common aquatic food, play an important role in shellfish allergy. In this study, 2 tropomyosin (TM) isoforms TM-α and TM-β (TM-α/-β) in Alectryonella plicatula were identified. The sequences of 852 bp encoding 284 amino acids of TM-α/-β and 2 recombinant proteins were obtained, respectively. There were 12 amino acid differences between TM-α/-β. The results of immunological experiments indicated that TM-β had stronger immunobinding activity and immunoreactivity than those of TM-α. Structural analysis showed that TM-β had more α-helix and higher surface hydrophobicity than TM-α. Sequences and epitopes alignment with shellfish TMs revealed that amino acids of TM-β were more frequently recognized as IgE epitopes in other shellfish TMs than TM-α. Differences in structure and sequence account for the higher immunological activity of TM-β compared to TM-α. These findings provide a theoretical basis for enriching the understanding of shellfish TM and accurate diagnosis of allergic components.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3697_ESM.docx (338.4 KB)

References

[1]

L. Xu, J. Cai, T.L. Gao, et al., Shellfish consumption and health: a comprehensive review of human studies and recommendations for enhanced public policy, Crit. Rev. Food Sci. 62(17) (2022) 4656-4668. http://doi.org/10.1080/10408398.2021.1878098.

[2]

H.A. Brough, A.H. Liu, S. Sicherer, et al., Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy, J. Allergy Clin. Immun. 135(1) (2015) 164-170. http://doi.org/10.1016/j.jaci.2014.10.007.

[3]

A.L. Lopata, J. Kleine-Tebbe, S.D. Kamath, Allergens and molecular diagnostics of shellfish allergy: part 22 of the series molecular allergology, Allergo J. Int. 25(7) (2016) 210-218. http://doi.org/10.1007/s40629-016-0124-2.

[4]

H. Feng, Y. Chen, H. Chen, et al., A methodology of epidemiologic study in the general population focusing on food allergy - China, 2020, China CDC Weekly 4(34) (2022) 749-755. http://doi.org/10.46234/ccdcw2022.159.

[5]

M. Ramesh, J.A. Lieberman, Adult-onset food allergies, Ann. Allerg Asthma Im. 119(2) (2017) 111-119. http://doi.org/10.1016/j.anai.2017.05.014.

[6]

C.Y.Y. Wai, N.Y.H. Leung, K.H. Chu, et al., Overcoming shellfish allergy: how far have we come? Int. J. Mol. Sci. 21(6) (2020) 2234. http://doi.org/10.3390/ijms21062234.

[7]

J. Kattan, The prevalence and natural history of food allergy, Curr. Allergy Asthm R. 16(7) (2016) 47. http://doi.org/10.1007/s11882-016-0627-4.

[8]

X. Liu, Y.Y. Ma, L. Liu, et al., Effects of high hydrostatic pressure on conformation and IgG binding capacity of tropomyosin in Pacific oyster (Crassostrea gigas), Food Chem. 404(Pt A) (2023) 134595. http://doi.org/10.1016/j.foodchem.2022.134595.

[9]

J.T. Zhang, W.T. Liu, R.X. Zhang, et al., Hypoallergenic mutants of the major oyster allergen Cra g 1 alleviate oyster tropomyosin allergenic potency, Int. J. Biol. Macromol. 164(1) (2020) 1973-1983. http://doi.org/10.1016/j.ijbiomac.2020.07.325.

[10]

H. Yu, Q. Li, R.H. Yu, Microsatellite variation in the oyster Crassostrea plicatula along the coast of China, J. Ocean U. China 7(4) (2008) 432-438. http://doi.org/10.1007/s11802-008-0432-3.

[11]

T. Erban, P. Klimov, P. Talacko, et al., Proteogenomics of the house dust mite, Dermatophagoides farinae: allergen repertoire, accurate allergen identification, isoforms, and sex-biased proteome differences, J. Proteomics 210(6) (2020) 103535. http://doi.org/10.1016/j.jprot.2019.103535.

[12]

Q.F. Cai, G.M. Liu, T. Li, et al., Purification and characterization of parvalbumins, the major allergens in red stingray (Dasyatis akajei), J. Agr. Food Chem. 58(24) (2010) 12964-12969. http://doi.org/10.1021/jf103316h.

[13]

R.Q. Yang, Y.L. Chen, F. Chen, et al., Purification, characterization, and crystal structure of parvalbumins, the major allergens in Mustelus griseus, J. Agr. Food Chem. 66(30) (2018) 8150-8159. http://doi.org/10.1021/acs.jafc.8b01889.

[14]

J. Klueber, J. Costa, S. Randow, et al., Homologous tropomyosins from vertebrate and invertebrate: recombinant calibrator proteins in functional biological assays for tropomyosin allergenicity assessment of novel animal foods, Clin. Exp. Allergy 50(1) (2020) 105-116. http://doi.org/10.1111/cea.13503.

[15]

I. Ahmed, H. Lin, L. Xu, et al., Immunomodulatory effect of laccase/caffeic acid and transglutaminase in alleviating shrimp tropomyosin (Met e 1) allergenicity, J. Agr. Food Chem. 68(29) (2020) 7765-7778. http://doi.org/10.1021/acs.jafc.0c02366.

[16]

M.A. Faber, M. Pascal, K.O. El, et al., Shellfish allergens: tropomyosin and beyond, Allergy 72(6) (2017) 842-848. http://doi.org/10.1111/all.13115.

[17]

L.L. Xu, J. Chen, L.R. Sun, et al., Analysis of the allergenicity and B cell epitopes in tropomyosin of shrimp (Litopenaeus vannamei) and correlation to cross-reactivity based on epitopes with fish (Larimichthys crocea) and clam (Ruditapes philippinarum), Food Chem. 323(1) (2020) 126763. http://doi.org/10.1016/j.foodchem.2020.126763.

[18]

X. Yun, M.S. Li, Y. Chen, et al., Characterization, epitope identification, and cross-reactivity analysis of tropomyosin: an important allergen of Crassostrea angulata, J. Agr. Food Chem. 70(29) (2022) 9201-9213. http://doi.org/10.1021/acs.jafc.2c03754.

[19]

A. Pomes, J.M. Davies, G. Gadermaier, et al., WHO/IUIS allergen nomenclature: providing a common language, Mol. Immunol. 100 (2018) 3-13. http://doi.org/10.1016/j.molimm.2018.03.003.

[20]

K. Motoyama, Y. Suma, S. Ishizaki, et al., Molecular cloning of tropomyosins identified as allergens in six species of crustaceans, J. Agr. Food Chem. 55(3) (2007) 985-991. http://doi.org/10.1021/jf062798x.

[21]

L. Fang, G. Li, J. Zhang, et al., Identification and mutational analysis of continuous, immunodominant epitopes of the major oyster allergen Crag 1, Clin. Immunol. 201 (2019) 20-29. http://doi.org/10.1016/j.clim.2019.02.008.

[22]

T.L. Bai, X.Y. Han, M.S. Li, et al., Effects of the Maillard reaction on the epitopes and immunoreactivity of tropomyosin, a major allergen in Chlamys nobilis, Food Funct. 12(11) (2021) 5096-5108. http://doi.org/10.1039/d1fo00270h.

[23]

N.R. Ji, X.Y. Han, C.C. Yu, et al., Identification of linear epitopes and their major role in the immunoglobulin E-binding capacity of tropomyosin from Alectryonella plicatula, Food Funct. 13(17) (2022) 9078-9090. http://doi.org/10.1039/d2fo01713j.

[24]

F. Huan, T.J. Han, M. Liu, et al., Identification and characterization of Crassostrea angulata arginine kinase, a novel allergen that causes cross-reactivity among shellfish, Food Funct. 12(20) (2021) 9866-9879. http://doi.org/10.1039/d1fo02042k.

[25]

T.J. Han, M. Liu, F. Huan, et al., Identification and cross-reactivity analysis of sarcoplasmic-calcium-binding protein: a novel allergen in Crassostrea angulata, J. Agr. Food Chem. 68(18) (2020) 5221-5231. http://doi.org/10.1021/acs.jafc.0c01543.

[26]

K. Kanchan, S. Clay, H. Irizar, et al., Current insights into the genetics of food allergy, J. Allergy Clin. Immun. 147(1) (2021) 15-28. http://doi.org/10.1016/j.jaci.2020.10.039.

[27]

L.L. Fu, C. Wang, Y. Zhu, et al., Seafood allergy: occurrence, mechanisms and measures, Trends Food Sci. Tech. 88 (2019) 80-92. http://doi.org/10.1016/j.tifs.2019.03.025.

[28]

J. Muthukumar, P. Selvasekaran, M. Lokanadham, et al., Food and food products associated with food allergy and food intolerance: an overview, Food Res. Int. 138(Pt B) (2020) 109780. http://doi.org/10.1016/j.foodres.2020.109780.

[29]

T. Ruethers, A.C. Taki, E.B. Johnston, et al., Seafood allergy: a comprehensive review of fish and shellfish allergens, Mol. Immunol. 100 (2018) 28-57. http://doi.org/10.1016/j.molimm.2018.04.008.

[30]

Q. Li, W.G. Liu, K. Shirasu, et al., Reproductive cycle and biochemical composition of the Zhe oyster Crassostrea plicatula Gmelin in an eastern coastal bay of China, Aquaculture 261(2) (2006) 752-759. http://doi.org/https://doi.org/10.1016/j.aquaculture.2006.08.023.

[31]

S.M. Suh, M.J. Kim, H.I. Kim, et al., A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species, Food Chem. 317(1) (2020) 126451. http://doi.org/10.1016/j.foodchem.2020.126451.

[32]

Q. Wang, H. Liu, W. Teng, et al., Characterization of the complete mitochondrial genome of Alectryonella plicatula (Bivalvia: Ostreidae), Mitochondrial DNA B 6(5) (2021) 1581-1582. http://doi.org/10.1080/23802359.2021.1915205.

[33]

G. Pauli, H.J. Malling, The current state of recombinant allergens for immunotherapy, Curr. Opin. Allergy Cl. 10(6) (2010) 575-581. http://doi.org/10.1097/ACI.0b013e32833fd6c5.

[34]

S. Blank, C.A. Jakwerth, U.M. Zissler, et al., Molecular determination of insect venom allergies, Expert Rev. Mol. Diagn. 22(11) (2022) 983-986. http://doi.org/10.1080/14737159.2022.2153038.

[35]

S. Gelis, M. Rueda, A. Valero, et al., Shellfish allergy: unmet needs in diagnosis and treatment, J. Invest. Allerg Clin. 30(6) (2020) 409-420. http://doi.org/10.18176/jiaci.0565.

[36]

M.S. Li, F. Xia, Q.M. Liu, et al., Hypoallergenic derivatives of Scylla paramamosain heat-stable allergens alleviated food allergy symptoms in Balb/c mice, Food Funct. 13(22) (2022) 11518-11531. http://doi.org/10.1039/d2fo02184f.

[37]

I. Sander, P. Rozynek, H.P. Rihs, et al., Multiple wheat flour allergens and cross-reactive carbohydrate determinants bind IgE in baker’s asthma, Allergy 66(9) (2011) 1208-1215. http://doi.org/10.1111/j.1398-9995.2011.02636.x.

[38]

Y.S. Lapteva, V.N. Uversky, S.E. Permyakov, Sequence microheterogeneity of parvalbumin, the major fish allergen, Biochim. Biophys. Acta 1834(8) (2013) 1607-1614. http://doi.org/10.1016/j.bbapap.2013.04.025.

[39]

Z.S. Gao, X. Zhou, Z.W. Yang, et al., IgE-binding potencies of three peach Pru p 1 isoforms, Mol. Nutr. Food Res. 60(11) (2016) 2457-2466. http://doi.org/10.1002/mnfr.201500798.

[40]

S. Medler, T. Lilley, D.L. Mykles, Fiber polymorphism in skeletal muscles of the American lobster, Homarus americanus: continuum between slow-twitch (S1) and slow-tonic (S2) fibers, J. Exp. Biol. 207(Pt 16) (2004) 2755-2767. http://doi.org/10.1242/jeb.01094.

[41]

S. Jin, S. Jiang, Y. Xiong, et al., Molecular cloning of two tropomyosin family genes and expression analysis during development in oriental river prawn, Macrobrachium nipponense, Gene 546(2) (2014) 390-397. http://doi.org/10.1016/j.gene.2014.05.014.

[42]

I. Misaki, N. Takeshi, N. Yoko, et al., Analysis of major paralogs encoding the Fra a 1 allergen based on their organ-specificity in Fragaria×ananassa, Plant Cell Rep. 37(3) (2017) 411-424. http://doi.org/10.1007/s00299-017-2237-6.

[43]

Y.X. Zhang, H.L. Chen, S.J. Maleki, et al., Purification, characterization, and analysis of the allergenic properties of myosin light chain in Procambarus clarkii, J. Agr. Food Chem. 63(27) (2015) 6271-6282. http://doi.org/10.1021/acs.jafc.5b01318.

[44]

J.K. James, D.H. Pike, I.J. Khan, et al., Structural and dynamic properties of allergen and non-allergen forms of tropomyosin, Structure 26(7) (2018) 997-1006. http://doi.org/https://doi.org/10.1016/j.str.2018.05.002.

[45]

B. Orozco-Navarrete, Z. Kaczmarska, F. Dupeux, et al., Structural bases for the allergenicity of Fra a 1.02 in strawberry fruits, J. Agr. Food Chem. 68(39) (2020) 10951-10961. http://doi.org/10.1021/acs.jafc.9b05714.

[46]

F.G.C. Ekezie, D.W. Sun, J.H. Cheng, Altering the IgE binding capacity of king prawn (Litopenaeus vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet, Food Chem. 300(1) (2019) 125141-125143. http://doi.org/10.1016/j.foodchem.2019.125143.

[47]

L.L. Fu, C. Wang, J.B. Wang, et al., Maillard reaction with ribose, galacto-oligosaccharide or chitosan-oligosaccharide reduced the allergenicity of shrimp tropomyosin by inducing conformational changes, Food Chem. 274(15) (2019) 789-795. http://doi.org/10.1016/j.foodchem.2018.09.068.

[48]

J.H. Cheng, J.L. Li, D.W. Sun, Effects of dielectric barrier discharge cold plasma on structure, surface hydrophobicity and allergenic properties of shrimp tropomyosin, Food Chem. 409(30) (2023) 135316. http://doi.org/https://doi.org/10.1016/j.foodchem.2022.135316.

[49]

J. Zhao, W. Zhu, J. Zeng, et al., Insight into the mechanism of allergenicity decreasing in recombinant sarcoplasmic calcium-binding protein from shrimp (Litopenaeus vannamei) with thermal processing via spectroscopy and molecular dynamics simulation techniques, Food Res. Int. 157 (2022) 111427. http://doi.org/10.1016/j.foodres.2022.111427.

[50]

A. Dedic, G. Gadermaier, L. Vogel, et al., Immune recognition of novel isoforms and domains of the mugwort pollen major allergen Art v 1., Mol. Immunol. 46(3) (2009) 416-421.

[51]

S. Führer, R. Zeindl, M. Tollinger, NMR resonance assignments of the four isoforms of the hazelnut allergen Cor a 1.04, Biomol. Nmr. Assign 14(1) (2020) 45-49. http://doi.org/10.1007/s12104-019-09918-6.

[52]

R. Nugraha, S.D. Kamath, E. Johnston, et al., Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate allergens, Front. Immunol. 10 (2019) 2676. http://doi.org/10.3389/fimmu.2019.02676.

[53]

J.H. Cheng, H. Wang, D.W. Sun, Insight into the IgE-binding sites of allergenic peptides of tropomyosin in shrimp (Penaeus chinensis) induced by cold plasma active particles, Int. J. Biol. Macromol. 234 (2023) 123690. http://doi.org/10.1016/j.ijbiomac.2023.123690.

Food Science and Human Wellness
Pages 3697-3707
Cite this article:
Yang S, Chen Y, Huan F, et al. Identification and analysis of immunological activity of two isoforms of tropomyosin in Alectryonella plicatula. Food Science and Human Wellness, 2024, 13(6): 3697-3707. https://doi.org/10.26599/FSHW.2023.9250050
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return