Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The wild Lepista sordida is a kind of precious and rare edible fungus. An excellent strain of it by artificial domestication was obtained, which was high-yield and high in iron content. In this study, high-throughput comparative proteomics was used to reveal the regulatory mechanism of its primordium differentiation in the early fruiting body formation. The mycelium before the primordium differentiation mainly expressed high levels of mitochondrial functional proteins and carbon dioxide concentration regulatory proteins. In young mushrooms, the highly expressed proteins were mainly involved in cell component generation, cell proliferation, nitrogen compound metabolism, nucleotide metabolism, glutathione metabolism, and purine metabolism. The differential regulation patterns of pileus and stipe growth to maturity were also revealed. The highly expressed proteins related to transcription, RNA splicing, the production of various organelles, DNA conformational change, nucleosome organization, protein processing, maturation and transport, and cell detoxification regulated the pileus development and maturity. The proteins related to carbohydrate and energy metabolism, large amounts of obsolete cytoplasmic parts, nutrient deprivation, and external stimuli regulated the stipe development and maturity. Multiple CAZymes regulated nutrient absorption, morphogenesis, spore production, stress response, and other life activities at different growth and development stages.
K. Kumar, R. Mehra, R.P.F. Guiné, et al., Edible mushrooms: a comprehensive review on bioactive compounds with health benefits and processing aspects, Foods 10 (2021) 2996. DOI:10.3390/foods10122996.
B. Thongbai, K. Wittstein, C. Richter, et al., Successful cultivation of a valuable wild strain of Lepista sordida from Thailand, Mycol. Prog. 16 (2017) 311-323. DOI:10.1007/s11557-016-1262-0.
M. Aranha, G. Contato, S. Salgado, et al., Biochemical characterization and biological properties of mycelium extracts from Lepista sordida GMA-05 and Trametes hirsuta GMA-01: new mushroom strains isolated in Brazil, Braz. J. Microbiol. 53 (2022) 349-358. DOI:10.1007/s42770-021-00670-5.
H. Kang, S. Ji, H. Park, et al., Lepistatins A-C, chlorinated sesquiterpenes from the cultured basidiomycete Lepista sordida, Phytochemistry 143 (2017) 111-114. DOI:10.1016/j.phytochem.2017.08.003.
X.L. Chen, M. Wu, H.H. Ti, et al., Three new 3,6-dioxygenated diketopiperazines from the basidiomycete Lepista sordida, Helv. Chim. Acta 94 (2011) 1426-1430. DOI:10.1002/hlca.201000455.
S.S. Miao, R. Mao, R.H. Pei, et al., Antitumor activity of polysaccharides from Lepista sordida against laryngocarcinoma in vitro and in vivo, Int. J. Biol. Macromol. 60 (2013) 235-240. DOI:10.1016/j.ijbiomac.2013.05.033.
Q. Luo, L. Yan, P. Xu et al., Discovery of a polysaccharide from the fruiting bodies of Lepista sordida as potent inhibitors of indoleamine 2,3-dioxygenase (IDO) in HepG2 cells via blocking of STAT1-mediated JAK- PKC-δ signaling pathways, Carbohydr. Polym. 197 (2018) 540-547. DOI:10.1016/j.carbpol.2018.05.052.
W.Q. Zhong, N. Liu, Y.G. Xie, et al., Antioxidant and anti-aging activities of mycelial polysaccharides from Lepista sordida, Int. J. Biol. Macromol. 60 (2013) 355-359. DOI:10.1016/j.ijbiomac.2013.06.018.
Y.Y. Xu, Y.H. Li, Y.X. Lu, et al., Antioxidative and hepatoprotective activities of a novel polysaccharide (LSAP) from Lepista sordida mycelia, Food Sci. Hum. Wellness 10 (2021) 536-544. DOI:10.1016/j.fshw.2021.04.016.
S.P. Yu, J.C. Jiang, W.X. Li, Co-cultured Lepista sordida and Pholiota nameko polysaccharide-iron(iii) chelates exhibit good antioxidant activity, RSC Adv. 10 (2020) 27259-27265. DOI:10.1039/d0ra03258a.
D.C. Yin, J.Y. Qi, The physiological response of ectomycorrhizal fungus Lepista sordida to Cd and Cu stress, PeerJ 9 (2021) e11115. https://doi. org/10.7717/peerj.11115.
U. Kües, M. Navarro-González, How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development, Fungal Biol. Rev. 29 (2015) 63-97. DOI:10.1016/j.fbr.2015.05.001.
Y. Sakamoto, Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi, Fungal Biol. Rev. 32 (2018) 236-248. DOI:10.1016/j.fbr.2018.02.003.
Y.P. Lu, J.H. Liao, Z.J. Guo, et al., Genome survey and transcriptome analysis on mycelia and primordia of Agaricus blazei, BioMed Res. Int. 14 (2020) 1824183. DOI:10.1155/2020/1824183c.
L.P. Cao, Q. Zhang, R.Y. Miao, et al., Application of omics technology in the research on edible fungi, Curr. Res. Food Sci. 27 (2022) 100430. DOI:10.1016/j.crfs.2022.100430.
K. Mohanta, S. Kamran, M. Omar, et al., Plant MWpIDB: a database for the molecular weight and isoelectric points of the plant proteomes, Sci. Rep. 12 (2022) 7421. DOI:10.1038/s41598-022-11077-z.
C.L. Xie, W.B. Gong, Z.H. Zhu, et al., Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage, Genomics 110 (2018) 201-209. DOI:10.1016/j.ygeno.
J.Y. Liu, M.C. Chang, J.L. Meng, et al., A comparative proteome approach reveals metabolic changes associated with Flammulina velutipes mycelia in response to cold and light stress, J. Agric. Food Chem. 66 (2018) 3716-3725. DOI:10.1021/acs.jafc.8b00383.
X.X. Tong, F. Wang, H. Zhang, et al., iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Ophiocordyceps sinensis, PeerJ 9 (2021) e10940. DOI:10.7717/peerj.10940.
W.W. Zhu, J.B. Hu, Y. Li, et al., Comparative proteomic analysis of Plezaqurotus ostreatus reveals great metabolic differences in the cap and stipe development and the potential role of Ca2+ in the primordium differentiation, Int. J. Mol. Sci. 20 (2019) 6317. DOI:10.3390/ijms20246317.
T. Takano, N. Yamamoto, T. Suzuki, et al., Genome sequence analysis of the fairy ring-forming fungus Lepista sordida and gene candidates for interaction with plants, Sci. Rep. 9 (2019) 5888. DOI:10.1038/s41598-019-42231-9.
H. Choi, T. Suzuki, A. Ono, et al., The complete mitochondrial genome sequence of the fairy ring-forming fungus Lepista sordida, Mitochondrial DNA B 7 (2022) 712 - 714. https://doi. org/10. 1080/23802359. 2022.2067496.
X.Q. Yang, R.M. Lin, K. Xu, et al., Comparative proteomic analysis within the developmental stages of the mushroom white Hypsizygus marmoreus, J. Fungi. 7 (2021) 1064. DOI:10.3390/jof7121064.
H. Yu, S.X. Zhao, W.D. Lu, et al., A novel gene, encoding 3-aminobenzoate 6-monooxygenase, involved in 3-aminobenzoate degradation in Comamonas sp. strain QT12, Appl. Microbiol. Biotechnol. 102 (2018) 4843-4852. DOI:10.1007/s00253-018-9015-4.
J.Y. Liu, Y.C. Chang, J.L. Meng, et al., A comparative proteome approach reveals metabolic changes associated with Flammulina velutipes mycelia in response to cold and light stress, J. Agric. Food Chem. 66 (2018) 3716-3725. DOI:10.1021/acs.jafc.8b00383.
M. Mleczek, A. Budka, M. Siwulski, et al., Investigation of differentiation of metal contents of Agaricus bisporus, Lentinula edodes and Pleurotus ostreatus sold commercially in Poland between 2009 and 2017, J Food Compost. Anal. (2020) 103488. DOI:10.1016/j.jfca.2020.103488.
W. Zhou, W. Shi, X.W. Xu, et al., Glutamate synthase MoGlt1-mediated glutamate homeostasis is important for autophagy, virulence and conidiation in the rice blast fungus, Mol. Plant Pathol. 19 (2017) 564-578. https://doi. org/10.1111/mpp.12541.
V.H. Knaryan, S. Samantaray, M. Varghese, et al., Synthetic bovine proline-rich-polypeptides generate hydroxyl radicals and fail to protect dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in mice, Neuropeptides 40 (2006) 291-298. DOI:10.1016/j.npep.2006.03.005.
G. López-Doménech, R. Serrat, S. Mirra, et al., The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2, Nat. Commun. 3 (2012) 814. DOI:10.1038/ncomms1829.
X.N. Yu, G.C. Zhang, H.N. Liu, et al., Pre-mRNA processing factor 19 functions in DNA damage repair and radioresistance by modulating cyclin D1 in hepatocellular carcinoma, Mol. Ther. Nucleic Acids 27 (2021) 390-403. DOI:10.1016/j.omtn.2021.12.002.
R.M. Effros, R.S. Chang, P. Silverman, Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase, Science 199 (1978) 427-429. DOI:10.1126/science.413195.
M. Donzeau, J.P. Bourdineaud, G.J. Lauquin, Regulation by low temperatures and anaerobiosis of a yeast gene specifying a putative GPI-anchored plasma membrane protein, Mol. Microbiol. 20 (1996) 449-459. DOI:10.1111/j.1365-2958.1996.tb02631.x.
W.W. Zhu, J.B. Hu, Y. Li, et al., Comparative proteomic analysis of Pleurotus ostreatus reveals great metabolic differences in the cap and stipe development and the potential role of Ca2+ in the primordium differentiation, Int. J. Mol. Sci. 20 (2019) 6317. DOI:10.3390/ijms20246317.
M.V. Mohanan, A. Pushpanathan, S. Padmanabhan, et al., Overexpression of Glyoxalase Ⅲ gene in transgenic sugarcane confers enhanced performance under salinity stress, J. Plant Res. 134 (2021) 1083-1094. https://doi. org/10.1007/s10265-021-01300-9.
J. Gao, Y. Hao, X.S. Piao, et al., Aldehyde dehydrogenase 2 as a therapeutic target in oxidative stress-related diseases: post-translational modifications deserve more attention, Int. J. Mol. Sci. 23 (2022) 2682. https://doi. org/10.3390/ijms23052682.
D.A. Meireles, J.F. da Silva Neto, R.M. Domingos, et al., Ohr-OhrR, a neglected and highly efficient antioxidant system: structure, catalysis, phylogeny, regulation, and physiological roles, Free Radic. Biol. Med. 185 (2022) 6-24. DOI:10.1016/j.freeradbiomed.2022.04.001.
J.X. Gao, J. Chen, The role of clt1-regulated xylan metabolism in melanin and toxin formation for the pathogenicity of Curvularia lunata in maize, Mol. Plant Microbe Interact. 34 (2021) 617-630. DOI:10.1094/MPMI-08-20-0235-R.
X.Q. Liu, J.T. Xie, Y.P. Fu, et al., The subtilisin-like protease bcser2 affects the sclerotial formation, conidiation and virulence of Botrytis cinerea, Int. J. Mol. Sci. 21(2020) 603. DOI:10.3390/ijms21020603.
A. Kasei, H. Watanabe, N. Ishiduka, et al., Comparative analysis of the extradiol ring-cleavage dioxygenase ligb from Arabidopsis and 3,4-dihydroxyphenylalanine dioxygenase from betalain-producing plants, Plant Cell Physiol. 62 (2021) 732-740. DOI:10.1093/pcp/pcab031.
J.Y. Kim, D.Y. Kim, Y.J. Park, et al., Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light, PLoS ONE 15 (2020) e0230680. DOI:10.1371/journal.pone.0230680.
F. Rusnak, P. Mertz, Calcineurin: form and function, Physiol. Rev. 80 (2000) 1483-1521. DOI:10.1152/physrev.2000.80.4.1483.
W.W. Zhu, J.B. Hu, Y. Li, et al., Comparative proteomic analysis of Pleurotus ostreatus reveals great metabolic differences in the cap and stipe development and the potential role of Ca2+ in the primordium differentiation, Int. J. Mol. Sci. 20 (2019) 6317. DOI:10.3390/ijms20246317.
H.Y. Yu, L. Li, Phylogeny and molecular dating of the cerato-platanin-encoding genes, Genet. Mol. Biol. 37 (2014) 423-427. https://doi. org/10.1590/s1415-47572014005000003.
R. Zang, H. Lian, X. Zhong, et al., ZCCHC3 modulates TLR3-mediated signaling by promoting recruitment of TRIF to TLR3, J. Mol. Cell Biol. 12 (2020) 251-262. DOI:10.1093/jmcb/mjaa004.
J.P. Munyampundu, Y.P. Xu, X.Z. Cai, Phi class of glutathione s-transferase gene superfamily widely exists in nonplant taxonomic groups, Evol. Bioinform. 12 (2016) 59-71. DOI:10.4137/EBO.S35909.
B. Ranjan, S. Pillai, K. Permaul, et al., Expression of a novel recombinant cyanate hydratase (rTl-Cyn) in Pichia pastoris, characteristics and applicability in the detoxification of cyanate, Bioresour. Technol. 238 (2017) 582-588. DOI:10.1016/j.biortech.2017.04.091.
E. Kuznetsova, B. Nocek, G. Brown, et al., Functional diversity of haloacid dehalogenase superfamily phosphatases from Saccharomyces cerevisiae: biochemical, structural, and evolutionary insights, J. Biol. Chem. 290 (2015) 18678-18698. DOI:10.1074/jbc.M115.657916.
L. Silva, M. Marcet-Houben, A. Zerlotini, et al., Evolutionary histories of expanded peptidase families in Schistosoma mansoni, Mem. Inst. Oswaldo Cruz. 106 (2011) 864-877. DOI:10.1590/s0074-02762011000700013.
A. Roy, R. Tamuli, Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi, Arch. Microbiol. 204 (2022) 240. DOI:10.1007/s00203-022-02833-w.
M. Feng, J.H. Zhou, X.L. Yu, et al., Insights into biodegradation mechanisms of triphenyl phosphate by a novel fungal isolate and its potential in bioremediation of contaminated river sediment, J. Hazard. Mater. 424 (2020) 127545. DOI:10.1016/j.jhazmat.2021.127545.
Y. Huang, J.M. Tan, Z. Wang, et al., Cloning and characterization of two different L-type lectin genes from the Chinese mitten crab Eriocheir sinensis, Dev. Comp. Immunol. 46 (2014) 255-266. DOI:10.1016/j.dci.2014.04.015.
P. Huang, H.W. Ju, J.H. Min, et al., Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana, Plant Sci. 203-204 (2013) 98-106. https://doi. org/10.1016/j.plantsci.2012.12.019.
J.B. Heo, W.Y. Bang, S.W. Kim, et al., OsPRA1 plays a significant role in targeting of OsRab7 into the tonoplast via the prevacuolar compartment during vacuolar trafficking in plant cells, Planta 232 (2010) 861-871. DOI:10.1007/s00425-010-1226-6.
Y. Imanishi-Shimizu, Y. Kamogawa, Y. Shimada, et al., A capsule-associated gene of Cryptococcus neoformans, CAP64, is involved in pH homeostasis, MICROBIOL-SGM. 167 (2021) 001029. https://doi. org/10.1099/mic.0.001029.
H.Y. Wang, X. Tang, J.H. Liu, et al., The multiprotein exocyst complex is essential for cell separation in Schizosaccharomyces pombe, Mol. Biol. Cell. 13 (2002) 515-29. DOI:10.1091/mbc.01-11-0542.
K. Vikas, K. Pradhan, N. Budhlakoti, et al., Multi-locus genome-wide association studies (ML-GWAS) reveal novel genomic regions associated with seedling and adult plant stage leaf rust resistance in bread wheat (Triticum aestivum L.), Heredity 128 (2022) 434-449. https://doi. org/10.1038/s41437-022-00525-1.
M. Yamamoto, D. Maruyama, T. Endo, et al., Arabidopsis thaliana has a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants, Plant Cell Physiol. 49 (2008) 1547-1562. https://doi. org/10.1093/pcp/pcn119.
S.S. Elbaramawi, S.M. Ibrahim, E.M. Lashine, et al., Exploring the binding sites of Staphylococcus aureus phenylalanine tRNA synthetase: a homology model approach, J. Mol. Graph. 73 (2017) 36-47. DOI:10.1016/j.jmgm.2017.02.002.
N. Shibagaki, A.R. Grossman, The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis, J. Biol. Chem. 281 (2006) 22964-22973. DOI:10.1074/jbc.M603462200.
T. Kawano, M. Araseki, Y. Araki, et al., A small peptide sequence is sufficient for initiating kinesin-1 activation through part of TPR region of KLC1, Traffic 13 (2012) 834-848. DOI:10.1111/j.1600-0854.2012.01350.x.
S. Pagant, A. Wu, S. Edwards, et al., Sec24 is a coincidence detector that simultaneously binds two signals to drive ER export, Curr. Biol. 25 (2015) 403-412. DOI:10.1016/j.cub.2014.11.070.
P. Ngamskulrungroj, Y. Chang, B. Hansen, et al., Cryptococcus neoformans Yop1, an endoplasmic reticulum curvature-stabilizing protein, participates with Sey1 in influencing fluconazole-induced disomy formation, FEMS Yeast Res. 12 (2012) 748-754. DOI:10.1111/j.1567-1364.2012.00824.x.
F.R. Schumacher, G. Wilson, C.L. Day, The N-terminal extension of UBE2E ubiquitin-conjugating enzymes limits chain assembly, J. Mol. Biol. 425 (2013) 4099-4111. DOI:10.1016/j.jmb.2013.06.039.
P. Figueroa, G. Gusmaroli, G. Serino, et al., Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo, Plant Cell 17 (2005) 1180-1195. DOI:10.1105/tpc.105.031989.
V.S. Delvecchio, C. Fierro, S. Giovannini, et al., Emerging roles of the HECT -type E3 ubiquitin ligases in hematological malignancies, Discov. Oncol. 12 (2021) 39. DOI:10.1007/s12672-021-00435-4.
W.J. Cai, H.F. Yang, The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions, Cell Div. 11 (2016) 7. DOI:10.1186/s13008-016-0020-7.
M.A. Massiah, B.N. Simmons, K.M. Short, et al., Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING, J. Mol. Biol. 358 (2006) 532-545. DOI:10.1016/j.jmb.2006.02.009.
X.Y. Liu, H. Yang, X.H. Zhang, et al., Bdf1p deletion affects mitochondrial function and causes apoptotic cell death under salt stress, FEMS Yeast Res. 9 (2009) 240-246. DOI:10.1111/j.1567-1364.2008.00469.x.
Y. Wang, Y.Z. Deng, G. Cui, et al., The AGC kinase SsAgc1 regulates Sporisorium scitamineum mating/filamentation and pathogenicity, mSphere 4 (2019) e00259-19. DOI:10.1128/mSphere.00259-19.
V.E. González-Rodríguez, C. Garrido, J.M. Cantoral, et al., The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea, Fungal Biol. 120 (2016) 1225-1235. DOI:10.1016/j.funbio.2016.07.007.
K.J. Boyce, A. Andrianopoulos, Ste20-related kinases: effectors of signaling and morphogenesis in fungi, Trends Microbiol. 19(2011) 400-410. DOI:10.1016/j.tim.2011.04.006.
N. Mimida, S. Komori, A. Suzuki, et al., Functions of the apple TFL1/FT orthologs in phase transition, Sci. Hortic. 156 (2013) 106-112. https://doi. org/10.1016/j.scienta.2013.04.001.
F. Liu, I. Rehmani, S. Esaki, et al., Pirin is an iron-dependent redox regulator of NF-κB, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9722-9727. https://doi. org/10.1073/pnas.1221743110.
X. Du, H. Takagi, N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species, J. Biochem. 138 (2005) 391-397. DOI:10.1093/jb/mvi134.
J. Ling, F. Zeng, Y.X. Cao, Identification of a class of CFEM proteins containing a new conserved motif in Fusarium oxysporum, Physiol. Mol. Plant Pathol. 89 (2015) 41-48. DOI:10.1016/j.pmpp.2014.12.001.
F.J. Zhang, Y.H. Xie, H. Jiang, et al., The ankyrin repeat-containing protein MdANK2B regulates salt tolerance and ABA sensitivity in Malus domestica, Plant Cell Rep. 40 (2021) 405-419. DOI:10.1007/s00299-020-02642-9.
S.K. Yadav, J. Das, R. Kumar, et al., Calcium regulates the mycophagous ability of Burkholderia gladioli strain NGJ1 in a type Ⅲ secretion system-dependent manner, BMC Microbiol. 20 (2020) 216. DOI:10.1186/s12866-020-01897-2.
H.P. Ngo, D. Lydall, Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9, PLoS Genet. 6 (2010) e1001072. DOI:10.1371/journal.pgen.1001072.
M. Puhm, J. Hendrikson, M. Kivisaar, et al., Pseudomonas putida biofilm depends on the vWFa-Domain of LapA in peptides-containing growth medium, Int. J. Mol. Sci. 23 (2022) 5898. DOI:10.3390/ijms23115898.
S.M. Bowman, A. Piwowar, M. Al Dabbous, et al., Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa, Eukaryot Cell. 5 (2006) 587-600. DOI:10.1128/EC.5.3.587-600.2006.
G. Xie, M.Y. Liu, H. Zhu, et al., Esterase SeE of Streptococcus equi ssp. equi is a novel nonspecific carboxylic ester hydrolase, FEMS Microbiol Lett. 289 (2008) 181-186. DOI:10.1111/j.1574-6968.2008.01377.x.
J.L. Ma, Z.H. Pan, J.H. Huang, et al., The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems, Virulence 8 (2017) 1189-1202. DOI:10. 1080/21505594.2017.1279374.
C.L. McCombe, A.M. Catanzariti, J.R. Greenwood, et al., A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways, New Phytol. 239 (2023) 222-239. DOI:10.1111/nph.18727.
T.B. Liu, C.Y. Xue, The ubiquitin-proteasome system and f-box proteins in pathogenic fungi, Mycobiology 39 (2011) 243-248. DOI:10.5941/MYCO.2011.39.4.243.
A.W. Busch, B.L. Montgomery, Distinct light -, stress -, and nutrient-dependent regulation of multiple tryptophan-rich sensory protein (TSPO) genes in the Cyanobacterium Fremyella diplosiphon, Plant Signal. Behav. 12 (2017) e1293221. DOI:10.1080/15592324.2017.1293221.
P. Ascenzi, A. Pesce, M. Nardini, et al., Reductive nitrosylation of Methanosarcina acetivorans protoglobin: a comparative study, Biochem. Biophys. Res. Commun. 430 (2013) 1301-1305. DOI:10.1016/j.bbrc.2012.11.122.
B. San Luis, B. Sondgeroth, N. Nassar, et al., Sts-2 is a phosphatase that negatively regulates zeta-associated protein (ZAP)-70 and T cell receptor signaling pathways, J. Biol. Chem. 286 (2011) 15943-15954. https://doi. org/10.1074/jbc.M110.177634.
T. Jacoby, H. Flanagan, A. Faykin, et al., Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1, J. Biol. Chem. 272 (1997) 17749-17755. DOI:10.1074/jbc.272.28.17749.
M.M. Chaudet, D.R. Rose, Divergent evolution for diverse substrate recognition by family 31 glycoside hydrolases, Int. J. Biochem. Cell Biol. 94 (2016) 323-330. DOI:10.1139/bcb-2016-0022.
X.L. Xu, J.M. Huang, J. Fang, et al., Expression of a fungal glucoamylase in transgenic rice seeds, Protein Expr. Purif. 61 (2008) 113-116. https://doi. org/10.1016/j.pep.2008.05.019.
J.L. Xu, J. Zhao, L.F. Wang, et al., Enhanced β-galactosidase production from whey powder by a mutant of the psychrotolerant yeast Guehomyces pullulans 17-1 for hydrolysis of lactose, Appl. Biochem. Biotechnol. 166 (2012) 599-611. DOI:10.1007/s12010-011-9451-4.
D. Li, T. Fei, Y. Wang, et al., A cold-active 1,4-α-glucan branching enzyme from Bifidobacterium longum reduces the retrogradation and enhances the slow digestibility of wheat starch, Food Chem. 324 (2020) 126855. DOI:10.1016/j.foodchem.2020.126855.
F. Afzal-Javan, M. Mobini-Dehkordi, Amplification, sequencing and cloning of Iranian native Bacillus subtilis alpha-amylase gene in Saccharomyces cerevisiae, Jundishapur J Microbiol. 6 (2013). DOI:10.5812/jjm.7371.
A. Chang, S. Singh, K.E. Helmich, et al., Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity, Proc. Natl. Acad. Sci. 108 (2011) 17649-17654. https://doi. org/10.1073/pnas.1108484108.
T. Chakraborty, R. Tóth, J.D. Nosanchuk, et al., Multicopper oxidases in Saccharomyces cerevisiae and human pathogenic fungi, J. Fungi 6 (2020) 56. DOI:10.3390/jof6020056.
Q. Liu, J.C. Greimann, C.D. Lima, Reconstitution, activities, and structure of the eukaryotic RNA exosome, Cell 127 (2006) 1223-1237. https://doi. org/10.1016/j.cell.2006.10.037.
K. Umezawa, S. Itakura, Influence of carbon source on wood decay-associated gene expression in sequential hyphal zones of the brown rot fungus Gloeophyllum trabeum, Bioscience, Biosci. Biotechnol. Biochem. 85 (2021) 1782-1788. DOI:10.1093/bbb/zbab080.
B. Dummitt, W.S. Micka, Y.H. Chang, Yeast glutamine-fructose-6-phosphate aminotransferase (Gfa1) requires methionine aminopeptidase activity for proper function, J. Biol. Chem. 280 (2005) 14356-14360. DOI:10.1074/jbc.M501059200.
J. Qin, P. Zhao, Z. Ye, et al., Chitin synthase genes are differentially required for growth, stress response, and virulence in Verticillium dahliae, J. Fungi 8 (2022) 681. DOI:10.3390/jof8070681.
Z. He, L. Luo, N.O. Keyhani, et al., The C-terminal MIR-containing region in the Pmt1 O-mannosyltransferase restrains sporulation and is dispensable for virulence in Beauveria bassiana, Appl. Microbiol. Biotechnol. 101 (2017) 1143-1161. DOI:10.1007/s00253-016-7894-9.
V. Puchart, J.W. Agger, J.G. Berrin, et al., Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates, J. Biotechnol. 233 (2016) 228-236. DOI:10.1016/j.jbiotec.2016.07.003.
A. Mukherjee, S. Sarkar, S. Gupta, et al., DMSO strengthens chitin deacetylase-chitin interaction: physicochemical, kinetic, structural and catalytic insights, Carbohydr. Polym. 223 (2019) 115032. https://doi. org/10.1016/j.carbpol.2019.115032.
I. Mouyna, T. Fontaine, M. Vai, et al., Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall, J. Biol. Chem. 275 (2000) 14882. DOI:10.1074/jbc.275.20.14882.
J. Kuuskeri, M. Häkkinen, P. Laine, et al., Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose, Biotechnol Biofuels. 9 (2016) 192. DOI:10.1186/s13068-016-0608-9.
K. Balasubramaniam, K. Sharma, A. Rani, et al., Deciphering the mode of action, structural and biochemical analysis of heparinase Ⅱ/Ⅲ (PsPL12a) a new member of family 12 polysaccharide lyase from pseudopedobacter saltans, Ann. Microbiol. 68 (2018) 409-418. DOI:10.1007/s13213-018-1347-x.
P. Ferreira, J. Carro, A. Serrano, et al., A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 polyporales genomes, Mycologia 107 (2015) 1105-1119. DOI:10.3852/15-027.
974
Views
64
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).