PDF (6.4 MB)
Collect
Submit Manuscript
Open Access

Bakuchiol ameliorates glycolipid homeostasis by reducing inflammation

Zhenhua Liua,b,c,1Xiaoqing Xua,1Zhenhua Lianga,1Yixiao Chena,bQiuyi Wanga,bWenyi Kanga,b,c,d()Yan Zhanga,e,f ()Bin Conge()
National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
College of Agriculture, Henan University, Kaifeng 475004, China
Shenzhen Research Institute of Henan University, Shenzhen 518000, China
Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China

1 These authors made equal contributions to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Inflammatory stimulation plays a significant role in the development and worsening of insulin-resistant diabetes. Therefore, it is crucial to identify therapeutic agents that can alleviate insulin resistance by targeting inflammation. Here, we present evidence that Bakuchiol (BL), a monoterpene phenolic compound first discovered from Psoralea corylifolia L. as traditional Chinese medicine, can effectively improve insulin resistance in diabetic mice through anti-inflammation. Our findings demonstrate that BL alleviates inflammation by inhibiting the toll-like receptor 4/nuclear factor κB/mitogen-activated protein kinase axis, consequently enhancing insulin receptor signaling through the c-Jun N-terminal kinase/suppressors of cytokine signaling 3/insulin receptor substrate1 pathway and improving glucolipid homeostasis. Furthermore, the insulin recovery achieved with BL (60 mg/kg) was comparable to that of metformin (200 mg/kg). These results provide further support for considering BL as a potential treatment option for insulin-resistant diabetes mellitus.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3159_ESM.docx (6.4 MB)

References

[1]

M. Nazarzadeh, Z. Bidel, D. Canoy, et al., Blood pressure-lowering treatment for prevention of major cardiovascular diseases in people with and without type 2 diabetes: an individual participant-level data meta-analysis, Lancet Diabetes Endocrinol. 10(9) (2022) 645-654. https://doi.org/10.1016/s2213-8587(22)00172-3.

[2]

X. Lin, Y. Xu, X. Pan, et al., Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025, Sci. Rep. 10(1) (2020) 14790. https://doi.org/10.1038/s41598-020-71908-9.

[3]

W. Yang, J. Lu, J. Weng, et al., Prevalence of diabetes among men and women in China, New Engl. J. Med. 362(12) (2010) 1090-1101. https://doi.org/10.1056/nejmoa0908292.

[4]

M. Roden, Mechanisms of disease: hepatic steatosis in type 2 diabetes-pathogenesis and clinical relevance, Nat. Clin. Pract. Endoc. 2(6) (2006) 335-348. https://doi.org/10.1038/ncpendmet0190.

[5]

J. Steinberger, S.R. Daniels, Obesity, insulin resistance, diabetes, and cardiovascular risk in children, Circulation 107(10) (2003) 1448-1453. https://doi.org/10.1161/01.CIR.0000060923.07573.F2.

[6]

F.S.A. Saadeldeen, Y. Niu, H. Wang, et al., Natural products: regulating glucose metabolism and improving insulin resistance, Food Sci. Hum. Wellness 9(3) (2020) 214-228. https://doi.org/10.1016/j.fshw.2020.04.005.

[7]

A. Fuchs, D. Samovski, G.I. Smith, et al., Associations among adipose tissue immunology, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease, Gastroenterology 161(3) (2021) 968-981. https://doi.org/10.1053/j.gastro.2021.05.008.

[8]

H. Li, C. Wang, J. Zhao, et al., JNK downregulation improves olanzapine-induced insulin resistance by suppressing IRS1 Ser307 phosphorylation and reducing inflammation, Biomed. Pharmacother. 142 (2021) 112071. https://doi.org/10.1016/j.biopha.2021.112071.

[9]

H. Xiao, X. Sun, Z. Lin, et al., Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism, Acta Pharm. Sin. B 12(6) (2022) 2887-2904. https://doi.org/10.1016/j.apsb.2021.12.023.

[10]

T. Cai, X. Ye, R. Li, et al., Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice, Front. Pharmacol. 11 (2020) 1-11. https://doi.org/10.3389/fphar.2020.01249.

[11]

N. Wang, Y. Ma, Z. Liu, et al., Hydroxytyrosol prevents PM2.5-induced adiposity and insulin resistance by restraining oxidative stress related NF-κB pathway and modulation of gut microbiota in a murine model, Free Radical. Bio. Med. 141 (2019) 393-407. https://doi.org/10.1016/j.freeradbiomed.2019.07.002.

[12]

H. Su, J. Mo, J. Ni, et al., Andrographolide exerts antihyperglycemic effect through strengthening intestinal barrier function and increasing microbial composition of Akkermansia muciniphila, Oxid. Med. Cell. Longev. 2020 (2020) 6538930. https://doi.org/10.1155/2020/6538930.

[13]

L. Li, R. Li, R. Zhu, et al., Salvianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice, Food Funct. 11(10) (2020) 8743-8756. https://doi.org/10.1039/d0fo01116a.

[14]

M. Song, D. Tan, B. Li, et al., Gypenoside ameliorates insulin resistance and hyperglycemia via the AMPK-mediated signaling pathways in the liver of type 2 diabetes mellitus mice, Food Sci. Hum. Wellness 11(5) (2022) 1347-1354. https://doi.org/10.1016/j.fshw.2022.04.029.

[15]

H. Lim, Y. Kim, B. Kim, et al., Bakuchiol suppresses inflammatory responses via the downregulation of the p38 MAPK/ERK signaling pathway, Int. J. Mol. Sci. 20 (2019) 3574. https://doi.org/10.3390/ijms20143574.

[16]

L. Miao, X. Yun, R. Tao, et al., Bakuchiol exhibits anti-metastasis activity through NF-κB cross-talk signaling with AR and ERβ in androgen-independent prostate cancer cells PC-3, J. Pharmacol. Sci. 138 (2018) 1-8. https://doi.org/10.1016/j.jphs.2017.04.004.

[17]

D. Zhang, S. Hamdoun, R. Chen, et al., Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry, Pharmacol. Res. 172 (2021) 105820. https://doi.org/10.1016/j.phrs.2021.105820.

[18]

H. Li, J. Liu, C. Liu, et al., Design, synthesis, and biological evaluation of membrane-active bakuchiol derivatives as effective broad-spectrum antibacterial agents, J. Med. Chem. 64(9) (2021) 5603-5619. https://doi.org/10.1021/acs.jmedchem.0c02059.

[19]

H. Draelos, J. Gunt, S. Zeichner, et al., Clinical evaluation of a nature-based bakuchiol anti-aging moisturizer for sensitive skin, J. Drugs Dermatol. 19(12) (2020) 1181-1183. https://doi.org/10.36849/jdd.2020.5522.

[20]

X. Wei, L. Lin, Q. Yuan, et al., Bavachin protects against diet-induced hepatic steatosis and obesity in mice, Acta Pharmacol. Sin. 44(7) (2023) 1416-1428. https://doi.org/10.1038/s41401-023-01056-z.

[21]

M. Shi, Y. Zhang, M. Song, et al., Screening the marker components in Psoralea corylifolia L. with the aids of spectrum-effect relationship and component knock-out by UPLC-MS2, Int. J. Mol. Sci. 19(11) (2018) 3439. https://doi.org/10.3390/ijms19113439.

[22]

J.M. Krenisky, J. Luo, M.J. Reed, et al., Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae), a peruvian medicinal plant used for the treatment of diabetes, Biol. Pharm. Bull. 22(10) (1999) 1137-1140. https://doi.org/10.1248/bpb.22.1137.

[23]

W. Ma, W. Guo, F. Shang, et al., Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway, Oxid. Med. Cell. Longev. 2020 (2020) 3732718. https://doi.org/10.1155/2020/3732718.

[24]

J. Dong, Q. Liang, Y. Niu, et al., Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota, Int. J. Biol. Macromol. 159 (2020) 725-738. https://doi.org/10.1016/j.ijbiomac.2020.05.042.

[25]

Q. Liang, J. Dong, S. Wang, et al., Immunomodulatory effects of Nigella sativa seed polysaccharides by gut microbial and proteomic technologies, Int. J. Biol. Macromol. 184 (2021) 483-496. https://doi.org/10.1016/j.ijbiomac.2021.06.118.

[26]

X. Zhang, Z. Liang, G.I.N. Waterhouse, et al., Structural characteristics, anticoagulant and antithrombotic mechanism of a novel polysaccharide from Rosa chinensis Flos, Food Sci. Hum. Wellness 12(2) (2023) 407-415. https://doi.org/10.1016/j.fshw.2022.07.042.

[27]

Y. Zhang, P. Lv, J. Ma, et al., Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo, Acta Pharm. Sin. B 12(2) (2022) 890-906. https://doi.org/10.1016/j.apsb.2021.07.010.

[28]

Q. Tang, S. Chen, S.A.H. Rizvi, et al., Two alkaloids from Delphinium brunonianum Royle, their anti-inflammatory and anti-oxidative stress activity via NF-κB signaling pathway, Front. Nutr. 8 (2022) 1-11. https://doi.org/10.3389/fnut.2021.826957.

[29]

L. Zhu, Z. She, X. Cheng, et al., Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes, Cell Metab. 31(6) (2020) 1068-1077. https://doi.org/10.1016/j.cmet.2020.04.021.

[30]

X. Yuan, R. Wang, B. Han, et al., Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes, Nat. Commun. 13(1) (2022) 6356. https://doi.org/10.1038/s41467-022-33656-4.

[31]

Y. Kawano, M. Edwards, Y. Huang, et al., Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome, Cell 185(19) (2022) 3501-3519. https://doi.org/10.1016/j.cell.2022.08.005.

[32]

B.J. Russell, S.D. Brown, N. Siguenza, et al., Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes, Cell 185(17) (2022) 3263-3277. https://doi.org/10.1016/j.cell.2022.06.050.

[33]

H. Guo, W. Chou, Y. Lai, et al., Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites, Science 370 (2020) 9097. https://doi.org/10.1126/science.aay9097.

[34]

K. Machiels, M. Joossens, J. Sabino, et al., A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis, Gut 63(8) (2014) 1275-1283. https://doi.org/10.1136/gutjnl-2013-304833.

[35]

S.A. Sonar, G. Lal, The iNOS activity during an immune response controls the CNS pathology in experimental autoimmune encephalomyelitis, Front. Immunol. 10 (2019) 1-13. https://doi.org/10.3389/fimmu.2019.00710.

[36]

T. Wei, M. Chandy, M. Nishiga, et al., Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation, Cell 185(10) (2022) 1676-1693. https://doi.org/10.1016/j.cell.2022.04.005.

[37]

M.J.A. Haider, Z. Albaqsumi, F. Al-Mulla, et al., SOCS3 regulates dectin-2-induced inflammation in PBMCs of diabetic patients, Cells 11(17) (2022) 2670. https://doi.org/10.3390/cells11172670.

[38]

P. Petrus, S. Lecoutre, L. Dollet, et al., Glutamine links obesity to inflammation in human white adipose tissue, Cell. Metab. 31(2) (2020) 375-390. https://doi.org/10.1016/j.cmet.2019.11.019.

[39]

W. Ying, W. Fu, Y.S. Lee, et al., The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities, Nat. Rev. Endocrinol. 16(2) (2020) 81-90. https://doi.org/10.1038/s41574-019-0286-3.

[40]

C. Ning, Y. Jiao, J. Wang, et al., Recent advances in the managements of type 2 diabetes mellitus and natural hypoglycemic substances, Food Sci. Hum. Wellness 11(5) (2022) 1121-1133. https://doi.org/10.1016/j.fshw.2022.04.004.

[41]

B.L. Furman, Streptozotocin-induced diabetic models in mice and rats, Curr. Protoc. 1(4) (2021) e78. https://doi.org/10.1002/cpz1.78.

[42]

A.K. Madiraju, Y. Qiu, R.J. Perry, et al., Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo, Nat. Med. 24(9) (2018) 1384-1394. https://doi.org/10.1038/s41591-018-0125-4.

[43]

A. Bluemke, A.P. Ring, J. Immeyer, et al., Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing: experimental evidence for a holistic treatment approach, Int. J. Cosmetic. Sci. 44(3) (2022) 377-393. https://doi.org/10.1111/ics.12784.

[44]

H. Liu, W. Guo, H. Guo, et al., Bakuchiol attenuates oxidative stress and neuron damage by regulating Trx1/TXNIP and the phosphorylation of AMPK after subarachnoid hemorrhage in mice, Front. Pharmacol. 11 (2020) 712. https://doi.org/10.3389/fphar.2020.00712.

[45]

A. Cariola, M. El Chami, J. Granatieri, et al., Anti-tyrosinase and antioxidant activity of meroterpene bakuchiol from Psoralea corylifolia (L.), Food Chem. 405 (2023) 134953. https://doi.org/10.1016/j.foodchem.2022.134953.

[46]

F.H. Karlsson, V. Tremaroli, I. Nookaew, et al., Gut metagenome in European women with normal, impaired and diabetic glucose control, Nature 498(7452) (2013) 99-103. https://doi.org/10.1038/nature12198.

[47]

M. Ren, H. Zhang, J. Qi, et al., An almond-based low carbohydrate diet improves depression and glycometabolism in patients with type 2 diabetes through Modulating gut microbiota and GLP-1: a randomized controlled trial, Nutrients 12(10) (2020). 3036. https://doi.org/10.3390/nu12103036.

[48]

M. Knip, H. Siljander, The role of the intestinal microbiota in type 1 diabetes mellitus, Nat. Rev. Endocrinol. 12(3) (2016) 154-167. https://doi.org/10.1038/nrendo.2015.218.

[49]

Z. Gao, J. Yin, J. Zhang, et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes 58(7) (2009) 1509-1517. https://doi.org/10.2337/db08-1637.

[50]

Y. Meng, P. Gharibani, A. Maisiyiti, et al., Su1886-sacral nerve stimulation inhibits the MAPK/NF-κb signaling pathway and promotes Treg-Th1/17 cell balance in TNBS-induced inflammation in rats, Gastroenterology 156(6) (2019) S-649. http://doi.org/10.1016/S0016-5085(19)38523-3.

[51]

C.M. Kusminski, P.E. Bickel, P.E. Scherer, Targeting adipose tissue in the treatment of obesity-associated diabetes, Nat. Rev. Drug Discov. 15(9) (2016) 639-660. https://doi.org/10.1038/nrd.2016.75.

[52]

J. Sun, P. Leng, X. Li, et al., Salvianolic acid A promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes through regulation of the AMPK-PGC1α signalling pathway, Adipocyte 11(1) (2022) 562-571. https://doi.org/10.1080/21623945.2022.2116790.

[53]

Z. Xu, D. Liu, D. Liu, et al., Equisetin is an anti-obesity candidate through targeting 11β-HSD1, Acta Pharm. Sin. B 12(5) (2022) 2358-2373. https://doi.org/10.1016/j.apsb.2022.01.006.

[54]

T.Y. Liu, C.X. Shi, R. Gao, et al., Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes, Clin. Sci. 129(10) (2015) 839-850. https://doi.org/10.1042/cs20150009.

[55]

L. Plum, E. Rother, H. Münzberg, et al., Enhanced leptin-stimulated PI3k activation in the CNS promotes white adipose tissue transdifferentiation, Cell Metab. 6(6) (2007) 431-445. https://doi.org/10.1016/j.cmet.2007.10.012.

[56]

S. Liu, L. Ma, X. Ren, et al., A new mouse model of type 2 diabetes mellitus established through combination of high-fat diet, streptozotocin and glucocorticoid, Life Sci. 286 (2021) 120062. https://doi.org/10.1016/j.lfs.2021.120062.

[57]

A. Kumar, G. Sawhney, R. Kumar Nagar, et al., Evaluation of the immunomodulatory and anti-inflammatory activity of Bakuchiol using RAW264.7 macrophage cell lines and in animal models stimulated by lipopolysaccharide (LPS), Int. Immunopharmacol. 91 (2021) 107264. https://doi.org/10.1016/j.intimp.2020.107264.

[58]

R. Gao, W. Shu, Y. Shen, et al., Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways, Food Sci. Hum. Wellness 10(1) (2021) 103-111. https://doi.org/10.1016/j.fshw.2020.04.014.

[59]

O.I. Vitseva, K. Tanriverdi, T.T. Tchkonia, et al., Inducible toll-like receptor and NF-κB regulatory pathway expression in human adipose tissue, Obesity 16(5) (2008) 932-937. https://doi.org/10.1038/oby.2008.25.

[60]

J. Hirosumi, G. Tuncman, L. Chang, et al., A central role for JNK in obesity and insulin resistance, Nature 420 (2002) 333-336. https://doi.org/10.1038/nature01137.

[61]

Y.T. Kuo, C.C. Lin, H.T. Kuo, et al., Identification of baicalin from Bofutsushosan and Daisaikoto as a potent inducer of glucose uptake and modulator of insulin signaling-associated pathways, J. Food Drug Anal. 27(1) (2019) 240-248. https://doi.org/10.1016/j.jfda.2018.07.002.

[62]

R. Zhu, B. Chen, Y. Bai, et al., Lycopene in protection against obesity and diabetes: a mechanistic review, Pharmacol. Res. 159 (2020) 104966. https://doi.org/10.1016/j.phrs.2020.104966.

[63]

X. Chen, W. Jiang, Y. Liu, et al., Anti-inflammatory action of geniposide promotes wound healing in diabetic rats, Pharm. Biol. 60(1) (2022) 294-299. https://doi.org/10.1080/13880209.2022.2030760.

Food Science and Human Wellness
Pages 3159-3170
Cite this article:
Liu Z, Xu X, Liang Z, et al. Bakuchiol ameliorates glycolipid homeostasis by reducing inflammation. Food Science and Human Wellness, 2024, 13(6): 3159-3170. https://doi.org/10.26599/FSHW.2023.9250052
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return