PDF (2.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Tables (2)
Table 1
Table 2
Open Access

Prospects of sea buckthorn (Hippophae rhamnoides L.) polysaccharides: preparation, structural characterization, and bioactivities diversity

Shuyuan ShiaRuiyun WuaZixin HanbYu SunbPinglan LiaFazheng Rena,cNan Shangb,c()
Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
College of Engineering, China Agricultural University, Beijing 100083, China
Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Healthy, China Agricultural University, Beijing 100083, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• The preparation methods of sea buckthorn polysaccharides were summarized.

• The structural diversity of sea buckthorn polysaccharides were described.

• The bioactivities and mechanisms of sea buckthorn polysaccharides were reviewed.

• The structure-activity relationship of sea buckthorn polysaccharides were discussed.

• The challenges faced and future research prospects were presented.

Graphical Abstract

View original image Download original image

Abstract

Sea buckthorn (Hippophae rhamnoides L.) is a natural homologous substance of medicine and food. Polysaccharide, as one of its primary active components, has very superior biological activity and can be used as a dietary supplement for functional foods, with good commercial prospects. Although initial progress has been made in the study of sea buckthorn polysaccharides, related studies have been fragmented and lacked systematic and generalization. This manuscript presents a critical analysis and systematic summary of the extraction and purification methods, structural characterization and physicochemical properties, biological activity and potential mechanisms, and structure-activity relationships of sea buckthorn polysaccharides. Accumulating evidence has indicated that sea buckthorn polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited exhibit superior biological activities in vitro and in vivo, including antioxidant, immunomodulatory, anti-inflammatory, hepatorenal protective, antibacterial, antiviral, and prebiotic activities. After analysis, it was concluded that there is a correlation between the relevant activities of sea buckthorn polysaccharides and that the structure of sea buckthorn polysaccharides has a great influence on their biological activity. We reviewed the challenges and limitations of sea buckthorn polysaccharides, summarized the critical aspects, and provided suggestions for potential breakthroughs in the research and application of sea buckthorn polysaccharide.

References

[1]
D.C. Hao, X.J. Gu, P.G. Xiao, Chemotaxonomy: a phylogeny-based approach, in: D.C. Hao, X.J. Gu, P.G. Xiao (Eds.), Medicinal Plants, Woodhead Publishing, 2015, pp. 1-48.
[2]

B.B. Ran, W.D. Li, Research progress on chemical constituents and their differences between sea buckthorn berries and leaves, Zhongguo Zhong Yao Za Zhi 44 (2019) 1767-1773. https://doi.org/10.19540/j.cnki.cjcmm.20190222.002.

[3]

X. Ma, W. Yang, H. Kallio, et al., Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides), Crit. Rev. Food Sci. 62 (2022) 3798-3816. https://doi.org/10.1080/10408398.2020.1869921.

[4]

C.J. Ruan, K. Rumpunen, H. Nybom, Advances in improvement of quality and resistance in a multipurpose crop: sea buckthorn, Crit. Rev. Biotechnol. 33 (2013) 126-144. https://doi.org/10.3109/07388551.2012.676024.

[5]
M.F. Jubayer, M.A.R. Mazumder, G.A. Nayik, et al., Hippophae rhamnoides L.: sea buckthorn, in: A. Sharma, G.A. Nayik (Eds.), Immunity Boosting Medicinal Plants of the Western Himalayas, Springer Nature Singapore, Singapore, 2023, pp. 463-491.
[6]

K. Wang, Z. Xu, X. Liao, Bioactive compounds, health benefits and functional food products of sea buckthorn: a review, Crit. Rev. Food. Sci. Nutr. 62 (2022) 6761-6782. https://doi.org/10.1080/10408398.2021.1905605.

[7]

X.F. Guo, B. Yang, W. Cai, et al., Effect of sea buckthorn (Hippophae rhamnoides L.) on blood lipid profiles: a systematic review and meta-analysis from 11 independent randomized controlled trials, Trends Food Sci. Technol. 61 (2017) 1-10. https://doi.org/10.1016/j.tifs.2016.11.007.

[8]

B. Yang, H. Kallio, Composition and physiological effects of sea buckthorn (Hippophaë) lipids, Trends Food Sci. Technol. 13 (2002) 160-167. https://doi.org/10.1016/S0924-2244(02)00136-X.

[9]

S. Ning, J. Zang, B. Zhang, et al., Botanical drugs in traditional Chinese medicine with wound healing properties, Front. Pharmacol. 13 (2022) 885484. https://doi.org/10.3389/fphar.2022.885484.

[10]

K. Dong, W.M.A.D. Binosha Fernando, R. Durham, et al., Nutritional value, health-promoting benefits and food application of sea buckthorn, Food Rev. Int. 39 (2023) 2122-2137. https://doi.org/10.1080/87559129.2021.1943429.

[11]

J. Liu, D. Xu, S. Chen, et al., Superfruits in China: bioactive phytochemicals and their potential health benefits: a review, Food Sci. Nutr. 9 (2021) 6892-6902. https://doi.org/10.1002/fsn3.2614.

[12]

C. He, G. Gao, J. Zhang, et al., Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn, Proteome Sci. 14 (2016) 14. https://doi.org/10.1186/s12953-016-0103-z.

[13]

C.Y. He, G.Y. Zhang, J.G. Zhang, et al., Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides, Proteomics 16 (2016) 2688-2697. https://doi.org/10.1002/pmic.201600160.

[14]

D. Najgebauer-Lejko, K. Liszka, M. Tabaszewska, et al., Probiotic yoghurts with sea buckthorn, elderberry, and sloe fruit purees, Molecules 26 (2021) 2345. https://doi.org/10.3390/molecules26082345.

[15]

O.V. Nistor, C.A. Bolea, D.G. Andronoiu, et al., Attempts for developing novel sugar-based and sugar-free sea buckthorn marmalades, Molecules 26 (2021) 3073. https://doi.org/10.3390/molecules26113073.

[16]

L.V. Tereshchuk, K.V. Starovoitova, P.A. Vyushinsky, et al., The use of sea buckthorn processing products in the creation of a functional biologically active food emulsion, Foods 11 (2022) 2226. https://doi.org/10.3390/foods11152226.

[17]

A.M. Gâtlan, G. Gutt, Sea buckthorn in plant based diets. an analytical approach of sea buckthorn fruits composition: nutritional value, applications, and health benefits, Int. J. Environ. Res. Public Health 18 (2021) 8986. https://doi.org/10.3390/ijerph18178986.

[18]

B. Skalski, B. Kontek, B. Lis, et al., Biological properties of Elaeagnus rhamnoides (L.) A. Nelson twig and leaf extracts, BMC Complement. Altern. Med. 19 (2019) 148. https://doi.org/10.1186/s12906-019-2564-y.

[19]

S.M. Sabir, H. Maqsood, I. Hayat, et al., Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin, J. Med. Food. 8 (2005) 518-522. https://doi.org/10.1089/jmf.2005.8.518.

[20]

G. Suryakumar, A. Gupta, Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.), J. Ethnopharmacol. 138 (2011) 268-278. https://doi.org/10.1016/j.jep.2011.09.024.

[21]

Y. Liu, G. Huang, Extraction and derivatisation of active polysaccharides, J. Enzyme Inhib. Med. Chem. 34 (2019) 1690-1696. https://doi.org/10.1080/14756366.2019.1660654.

[22]

M.M. Ahmad, S.A.S. Chatha, Y. Iqbal, et al., Recent trends in extraction, purification, and antioxidant activity evaluation of plant leaf-extract polysaccharides, Biofuel. Bioprod. Biorefin. 16 (2022) 1820-1848. https://doi.org/10.1002/bbb.2405.

[23]

W.H. Ni, T.T. Gao, H.L. Wang, et al., Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants, J. Ethnopharmacol. 150 (2013) 529-535. https://doi.org/10.1016/j.jep.2013.08.055.

[24]

Z.Y. Ma, Q.Y. Sun, L.L. Chang, et al., A natural anti-obesity reagent derived from sea buckthorn polysaccharides: structure characterization and anti-obesity evaluation in vivo, Food Chem. 375 (2022) 10. https://doi.org/10.1016/j.foodchem.2021.131884.

[25]

H.L. Wang, T.T. Gao, Y.Z. Du, et al., Anticancer and immunostimulating activities of a novel homogalacturonan from Hippophae rhamnoides L. berry, Carbohydr. Polym. 131 (2015) 288-296. https://doi.org/10.1016/j.carbpol.2015.06.021.

[26]

F.X. Guo, Y. Zeng, J.P. Li, et al., Effects of Hippophae rhamnoides L. subsp. chinensis Rousi polysaccharide on α-glucosidase enzyme activity and level of blood glucose, Acta Pharmacol. Sin. 48 (2013) 604-608.

[27]

C. Wei, X. Bao, J. Wang, et al., Isolation, purification and antioxidant activity of polysaccharides from the fruit of Hippophae rhamnoides, Food Sci. 42 (2021) 227-232. https://doi.org/10.7506/spkx1002-6630-20191015-133.

[28]

M.A. Amutha Gnana Arasi, M. Gopal Rao, J. Bagyalakshmi, Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits, Int. J. Biol. Macromol. 91 (2016) 227-232. https://doi.org/10.1016/j.ijbiomac.2016.05.039.

[29]

X. Chen, J. Yang, M. Shen, et al., Structure, function and advance application of microwave-treated polysaccharide: a review, Trends Food Sci. Technol. 123 (2022) 198-209. https://doi.org/10.1016/j.tifs.2022.03.016.

[30]

R. Cui, F. Zhu, Ultrasound modified polysaccharides: a review of structure, physicochemical properties, biological activities and food applications, Trends Food Sci. Technol. 107 (2021) 491-508. https://doi.org/10.1016/j.tifs.2020.11.018.

[31]

Q. Li, Z. Dou, Q. Duan, et al., A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods: antioxidant and bile acid-binding capacity, Food Sci. Hum. Wellness 13 (2024) 494-505. https://doi.org/10.26599/FSHW.2022.9250043.

[32]

E.W. Wei, R. Yang, H.P. Zhao, et al., Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries, Int. J. Biol. Macromol. 123 (2019) 280-290. https://doi.org/10.1016/j.ijbiomac.2018.11.074.

[33]

Y. Zhu, M. Wu, X. Li, et al., Flash extraction, characterization, and immunoenhancement activity of polysaccharide from Hippophae rhamnoides Linn, Chem. Biodivers. 20 (2023) e202200776. https://doi.org/10.1002/cbdv.202200776.

[34]

Y.L. Zhu, K.S. Liu, M. Yuen, et al., Extraction and characterization of a pectin from sea buckthorn peel, front. Nutr. 9 (2022) 15. https://doi.org/10.3389/fnut.2022.969465.

[35]

E.B. Farzaliyev, V.N. Golubev, G.K. Hafizov, Structure and properties of pectin substances of wild sea buckthorn (Hippophae rhamnoides L.) growing in Azerbaijan, BIO Web of Conferences 42 (2022) 1028. https://doi.org/10.1051/bioconf/20224201028.

[36]

H. Liu, W. Zhang, S.C. Dong, et al., Protective effects of sea buckthorn polysaccharide extracts against LPS/D-GalN-induced acute liver failure in mice via suppressing TLR4-NF-κB signaling, J. Ethnopharmacol. 176 (2015) 69-78. https://doi.org/10.1016/j.jep.2015.10.029.

[37]

Y. Xu, T. Jin, Z. Yu, et al., Extraction and purification of the polysaccharides in Hippohaere rhamnoides L, J. Northeast Agricultural University (English Edition) 14 (2007) 153-156.

[38]

G. Wang, Z. Cao, G. Du, et al., Optimization of extraction process for polysaccharide from Hippophae fhamnoides L, Medicinal Plant 1 (2010) 91-93.

[39]

C.P. Zhu, X.C. Zhai, L.Q. Li, et al., Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel, Food Chem. 177 (2015) 139-146. https://doi.org/10.1016/j.foodchem.2015.01.022.

[40]

Y. Tang, X. He, G. Liu, et al., Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide, Food Chem. 405 (2023) 134804. https://doi.org/10.1016/j.foodchem.2022.134804.

[41]

H. Yang, S.H. Yang, X.Q. Chen, et al., Dynamic changes in flavonoid, phenolic, and polysaccharide contents in leaves and fruits of sea buckthorn during the growing season in southeastern Tibet plateau, Sci. Hortic. 307 (2023) 6. https://doi.org/10.1016/j.scienta.2022.111497.

[42]

S. Basak, U.S. Annapure, The potential of subcritical water as a “green” method for the extraction and modification of pectin: a critical review, Food Res. Int. 161 (2022) 111849. https://doi.org/10.1016/j.foodres.2022.111849.

[43]

M. Kumar, M. Hasan, A. Sharma, et al., Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides: a review on extraction, characterization, and bioactivities, Int. J. Biol. Macromol. 229 (2022) 463-475. https://doi.org/10.1016/j.ijbiomac.2022.12.181.

[44]

L. Shi, Bioactivities, isolation and purification methods of polysaccharides from natural products: a review, Int. J. Biol. Macromol. 92 (2016) 37-48. https://doi.org/10.1016/j.ijbiomac.2016.06.100.

[45]

Y. Chen, F. Yao, K. Ming, et al., Polysaccharides from traditional Chinese medicines: extraction, purification, modification, and biological activity, Molecules 21 (2016) 1705. https://doi.org/10.3390/molecules21121705.

[46]

G. Huang, F. Chen, W. Yang, et al., Preparation, deproteinization and comparison of bioactive polysaccharides, Trends Food Sci. Technol. 109 (2021) 564-568. https://doi.org/10.1016/j.tifs.2021.01.038.

[47]

S.J. Zhang, T.T. Hu, Y.Y. Chen, et al., Analysis of the polysaccharide fractions isolated from pea (Pisum sativum L.) at different levels of purification, J. Food Biochem. 44 (2020) e13248. https://doi.org/10.1111/jfbc.13248.

[48]

J. Kuduk-Jaworska, J. Szpunar, K. Gasiorowski, et al., Immunomodulating polysaccharide fractions of Menyanthes trifoliata L, Z. Naturforsch C. 59 (2004) 485-493. https://doi.org/10.1515/znc-2004-7-806.

[49]

T. Feng, M. Zhang, Q. Sun, et al., Extraction of functional extracts from berries and their high quality processing: a comprehensive review, Crit. Rev. Food Sci. Nutr. 63 (2023) 7108-7125. https://doi.org/10.1080/10408398.2022.2040418.

[50]

Y. Ren, Y. Bai, Z. Zhang, et al., The preparation and structure analysis methods of natural polysaccharides of plants and fungi: a review of recent development, Molecules. 24 (2019) 3122.

[51]

Y. Zheng, J. Yan, C. Cao, et al., Application of chromatography in purification and structural analysis of natural polysaccharides: a review, J. Sep. Sci. 46 (2023) e2300368. https://doi.org/10.1002/jssc.202300368.

[52]

M. DuBois, K.A. Gilles, J.K. Hamilton, et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356. https://doi.org/10.1021/ac60111a017.

[53]

J.J. Sedmak, S.E. Grossberg, A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250, Anal. Biochem. 79 (1977) 544-552. https://doi.org/10.1016/0003-2697(77)90428-6.

[54]

H.L.Li, S.M.Peng, L. Li, et al., Studies on four conventional methods for protein determination, Chinese Pharm. J. 29 (2008) 277-278, 282.

[55]

X. Wang, J.R. Liu, X.H. Zhang, et al., Seabuckthorn berry polysaccharide extracts protect against acetaminophen induced hepatotoxicity in mice via activating the Nrf-2/HO-1-SOD-2 signaling pathway, Phytomedicine 38 (2018) 90-97. https://doi.org/10.1016/j.phymed.2017.11.007.

[56]

Y.Y. Li, J.Y. Chen, L.L. Cao, et al., Characterization of a novel polysaccharide isolated from Phyllanthus emblica L. and analysis of its antioxidant activities, J Food Sci. Tech. Mys. 55 (2018) 2758-2764. https://doi.org/10.1007/s13197-018-3199-6.

[57]

G. Chen, Q. Yuan, M. Saeeduddin, et al., Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities, Carbohydr. Polym. 153 (2016) 663-678. https://doi.org/10.1016/j.carbpol.2016.08.022.

[58]

W. Zhang, X.H. Zhang, K. Zou, et al., Seabuckthorn berry polysaccharide protects against carbon tetrachloride-induced hepatotoxicity in mice via anti-oxidative and anti-inflammatory activities, Food Funct. 8 (2017) 3130-3138. https://doi.org/10.1039/c7fo00399d.

[59]

X. Wu, W. Jiang, J. Lu, et al., Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry, Food Chem. 145 (2014) 976-983. https://doi.org/10.1016/j.foodchem.2013.09.019.

[60]

D.T. Wu, H. Guo, S. Lin, et al., Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides, Trends Food Sci. Technol. 79 (2018) 171-183. https://doi.org/10.1016/j.tifs.2018.07.016.

[61]

H.Y. Yao, J.Q. Wang, J.Y. Yin, et al., A review of NMR analysis in polysaccharide structure and conformation: progress, challenge and perspective, Food Res. Int. 143 (2021) 110290. https://doi.org/10.1016/j.foodres.2021.110290.

[62]

H.X. Wang, J. Zhao, D.M. Li, et al., Structural investigation of a uronic acid-containing polysaccharide from abalone by graded acid hydrolysis followed by PMP-HPLC-MSn and NMR analysis, Carbohydr Res. 402 (2015) 95-101. https://doi.org/10.1016/j.carres.2014.10.010.

[63]

C. Shen, T. Wang, F. Guo, et al., Structural characterization and intestinal protection activity of polysaccharides from sea buckthorn (Hippophae rhamnoides L.) berries, Carbohydr. Polym. 274 (2021) 13. https://doi.org/10.1016/j.carbpol.2021.118648.

[64]

X. Yang, S. Wei, X. Lu, et al., A neutral polysaccharide with a triple helix structure from ginger: characterization and immunomodulatory activity, Food Chem. 350 (2021) 129261. https://doi.org/10.1016/j.foodchem.2021.129261.

[65]

H. Zhao, J. Liu, Y. Wang, et al., Polysaccharides from sea buckthorn (Hippophae rhamnoides L.) berries ameliorate cognitive dysfunction in AD mice induced by a combination of D-gal and AlCl3 by suppressing oxidative stress and inflammation reaction, J Sci. Food Agr. 103 (2023) 6005-6016. https://doi.org/10.1002/jsfa.12673.

[66]

Y. Liu, L. Ran, Y. Wang, et al., Basic characterization, antioxidant and immunomodulatory activities of polysaccharides from sea buckthorn leaves, Fitoterapia 169 (2023) 105592. https://doi.org/10.1016/j.fitote.2023.105592.

[67]

C.J. Zhang, J.Y. Guo, H. Cheng, et al., Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus, Int. J Biol. Macromol. 151 (2020) 855-860. https://doi.org/10.1016/j.ijbiomac.2020.02.147.

[68]

Z. Wang, F. Zhao, P. Wei, et al., Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): a comprehensive review, Front. Nutr. 9 (2022) 1036295. https://doi.org/10.3389/fnut.2022.1036295.

[69]

G. Huang, X. Mei, J. Hu, The antioxidant activities of natural polysaccharides, Curr. Drug Targets. 18 (2017) 1296-1300. https://doi.org/10.2174/1389450118666170123145357.

[70]

A. Xu, W. Lai, P. Chen, et al., A comprehensive review on polysaccharide conjugates derived from tea leaves: composition, structure, function and application, Trends Food Sci. Technol. 114 (2021) 83-99. https://doi.org/10.1016/j.tifs.2021.05.020.

[71]

Y. Xin, S. Zhao, Y. Wang, et al., Study on the active substances and antioxidant activity of different solvent extracts of seabuckthorn leaves, Food R&D 42 (2021) 44-49. https://doi.org/10.12161/j.issn.1005-6521.2021.17.008.

[72]

Y. Jiao, H. Song, Y. Zhang, et al., Comparison of antioxidant activity and active substance of three kinds wild berry wine, Food and Fermentation Industries 41 (2015) 60-65.

[73]

F. Motta, M.E. Gershwin, C. Selmi, Mushrooms and immunity, J. Autoimmun. 117 (2021) 102576. https://doi.org/10.1016/j.jaut.2020.102576.

[74]

G. Feng, S. Laijin, S. Chen, et al., In vitro and in vivo immunoregulatory activity of sulfated fucan from the sea cucumber A. leucoprocta, Int. J. Biol. Macromol. 187 (2021) 931-938. https://doi.org/10.1016/j.ijbiomac.2021.08.008.

[75]

H.L. Wang, H.T. Bi, T.T. Gao, et al., A homogalacturonan from Hippophae rhamnoides L. Berries enhance immunomodulatory activity through TLR4/MyD88 pathway mediated activation of macrophages, Int. J. Biol. Macromol. 107 (2018) 1039-1045. https://doi.org/10.1016/j.ijbiomac.2017.09.083.

[76]

Y. Lan, Z. Ma, L. Chang, et al., Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis, Int. J. Biol. Macromol. 236 (2023) 123797. https://doi.org/10.1016/j.ijbiomac.2023.123797.

[77]

L. Zhao, M.Y. Li, K.C. Sun, et al., Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway, Int. J. Biol. Macromol. 155 (2020) 1202-1215. https://doi.org/10.1016/j.ijbiomac.2019.11.088.

[78]

L. Zhao, T. Geng, K. Sun, et al., Proteomic analysis reveals the molecular mechanism of Hippophae rhamnoides polysaccharide intervention in LPS-induced inflammation of IPEC-J2 cells in piglets, Int. J. Biol. Macromol. 164 (2020) 3294-3304. https://doi.org/10.1016/j.ijbiomac.2020.08.235.

[79]

M. Li, L. Chen, Y. Zhao, et al., Research on the mechanism of HRP relieving IPEC-J2 cells immunological stress based on transcriptome sequencing analysis, Front. Nutr. 9 (2022) 944390. https://doi.org/10.3389/fnut.2022.944390.

[80]

S. Buccheri, B.L. Da, Hepatorenal syndrome: definitions, diagnosis, and management, Clin. Liver Dis. 26 (2022) 181-201. https://doi.org/10.1016/j.cld.2022.01.002.

[81]

S. Tian, X. Jiang, Y. Tang, et al., Laminaria japonica fucoidan ameliorates cyclophosphamide-induced liver and kidney injury possibly by regulating Nrf2/HO-1 and TLR4/NF-κB signaling pathways, J. Sci. Food Agric. 102 (2022) 2604-2612. https://doi.org/10.1002/jsfa.11602.

[82]

C.F. Cen, J.P. Hu, Y.P. Fu, et al., Protective Effect of Hippophae rhamnoides polysaccharide against kidney injury in rats with severe acute pancreatitis, Curr. Top Nutraceut. Res. 19 (2021) 303-307. https://doi.org/10.37290/ctnr2641-452X.19:303-307.

[83]

X. Wang, W. Zhang, H. Liu, et al., Protective effects of sea buckthorn polysaccharide extracts on LPS/D-GalN-induced liver injury in mice and modulation on TLR4, SOCS3 expression, Chin. J. Microbiol. Immunol. 31 (2015) 1457-1460.

[84]

F. Liu, S. Zhao, W. Zhang, et al., Inhibitory effects of seabuckthorn polysaccharide on oxidative stress in mice with actue liver injury and modulatory effect on BCL-2/Bax and PPAR-γ expression, Chin. J. Microbiol. Immunol. 32 (2016) 358-361.

[85]

F.T. Liu, T. Wang, X.X. Li, et al., Involvement of NF-κB in the reversal of CYP3A down-regulation induced by sea buckthorn in BCG-induced rats, PLoS One 15 (2020) 19. https://doi.org/10.1371/journal.pone.0238810.

[86]

J. Liu, L. Kong, M. Shao, et al., Seabuckthorn polysaccharide combined with astragalus polysaccharide ameliorate alcoholic fatty liver by regulating intestinal flora, Front. Endocrinol. (Lausanne) 13 (2022) 1018557. https://doi.org/10.3389/fendo.2022.1018557.

[87]

Y. Zhou, X. Chen, T. Chen, et al., A review of the antibacterial activity and mechanisms of plant polysaccharides, Trends Food Sci. Technol. 123 (2022) 264-280. https://doi.org/10.1016/j.tifs.2022.03.020.

[88]

X. Qi, Y. Zhang, Z. Li, et al., The preparation of antibacterial and moisturizing emulsion based on natural acanthosis polysaccharides, Chemical World 61 (2020) 336-343.

[89]

K. Dhama, K. Karthik, R. Khandia, et al., Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects, Curr. Drug Metab. 19 (2018) 236-263. https://doi.org/10.2174/1389200219666180129145252.

[90]

C.C. Huan, Y. Xu, W. Zhang, et al., Hippophae rhamnoides polysaccharides dampen pseudorabies virus infection through downregulating adsorption, entry and oxidative stress, Int. J. Biol. Macromol. 207 (2022) 454-463. https://doi.org/10.1016/j.ijbiomac.2022.03.041.

[91]

O. Kurskaya, E. Prokopyeva, H.T. Bi, et al., Anti-influenza activity of medicinal material extracts from Qinghai-Tibet Plateau, Viruses-Basel 14 (2022) 10. https://doi.org/10.3390/v14020360.

[92]

R. Liu, H. Wang, Z. Zhang, et al., Progress in understanding interaction of polysaccharides with intestinal flora, Food Science 43 (2022) 363-373.

[93]

Y. Lan, C. Wang, C. Zhang, et al., Dietary sea buckthorn polysaccharide reduced lipid accumulation, alleviated inflammation and oxidative stress, and normalized imbalance of intestinal microbiota that was induced by high-fat diet in zebrafish Danio rerio, Fish Physiol. Biochem. 48 (2022) 19. https://doi.org/10.1007/s10695-022-01105-0.

[94]

T.S.B. Schmidt, J. Raes, P. Bork, The human gut microbiome: from association to modulation, Cell 172 (2018) 1198-1215. https://doi.org/10.1016/j.cell.2018.02.044.

[95]

Y. Lan, Q.Y. Sun, Z.Y. Ma, et al., Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis, Food Funct. 13 (2022) 2925-2937. https://doi.org/10.1039/d1fo03147c.

[96]

N. Li, C. Wang, M.I. Georgiev, et al., Advances in dietary polysaccharides as anticancer agents: structure-activity relationship, Trends Food Sci. Technol. 111 (2021) 360-377. https://doi.org/10.1016/j.tifs.2021.03.008.

[97]

H. Yuan, X. Zhu, W. Wang, et al., Hypoglycemic and anti-inflammatory effects of seabuckthorn seed protein in diabetic ICR mice, Food Funct. 7 (2016) 1610-1615. https://doi.org/10.1039/c5fo01600b.

[98]

B. Wang, L. Yan, S. Guo, et al., Structural elucidation, modification, and structure-activity relationship of polysaccharides in Chinese herbs: a review, Front Nutr. 9 (2022) 908175. https://doi.org/10.3389/fnut.2022.908175.

[99]

J. Zhang, D. Liu, C. Wen, et al., New light on Grifola frondosa polysaccharides as biological response modifiers, Trends Food Sci. Technol. 119 (2022) 565-578. https://doi.org/10.1016/j.tifs.2021.11.017.

[100]

A. Zong, H. Cao, F. Wang, Anticancer polysaccharides from natural resources: a review of recent research, Carbohydr. Polym. 90 (2012) 1395-1410. https://doi.org/10.1016/j.carbpol.2012.07.026.

[101]

S. Hu, S. Chen, H. Zhu, et al., Low molecular weight, 4-O-sulfation, and sulfation at meta-fucose positively promote the activities of sea cucumber fucoidans on improving insulin resistance in HFD-fed mice, Marine Drugs. 20 (2021) 37.

[102]

J. Cui, C. Zhao, L. Feng, et al., Pectins from fruits: relationships between extraction methods, structural characteristics, and functional properties, Trends Food Sci. Technol. 110 (2021) 39-54. https://doi.org/10.1016/j.tifs.2021.01.077.

[103]

X. Jiao, F. Li, J. Zhao, et al., The preparation and potential bioactivities of modified pectins: a review, Foods. 12 (2023) 1016. https://doi.org/10.3390/foods1205101

[104]

M. Li, J. Wen, X. Huang, et al., Interaction between polysaccharides and toll-like receptor 4: primary structural role, immune balance perspective, and 3D interaction model hypothesis, Food Chem. 374 (2022) 131586. https://doi.org/10.1016/j.foodchem.2021.131586.

[105]

J. Qu, P. Huang, L. Zhang, et al., Hepatoprotective effect of plant polysaccharides from natural resources: a review of the mechanisms and structure-activity relationship, Int. J. Biol. Macromol. 161 (2020) 24-34. https://doi.org/10.1016/j.ijbiomac.2020.05.196.

[106]

W. Ni, X. Zhang, H. Bi, et al., Preparation of a glucan from the roots of Rubus crataegifolius Bge. and its immunological activity, Carbohydr. Res. 344 (2009) 2512-2518. https://doi.org/10.1016/j.carres.2009.08.042.

[107]

I.A. Schepetkin, M.T. Quinn, Botanical polysaccharides: macrophage immunomodulation and therapeutic potential, Int. Immunopharmacol. 6 (2006) 317-333. https://doi.org/10.1016/j.intimp.2005.10.005.

[108]

H. Wang, T. Gao, Y. Du, et al., Anticancer and immunostimulating activities of a novel homogalacturonan from Hippophae rhamnoides L. berry, Carbohydr. Polym. 131 (2015) 288-296. https://doi.org/10.1016/j.carbpol.2015.06.021.

[109]

M. Yang, D. Zhou, H. Xiao, et al., Marine-derived uronic acid-containing polysaccharides: structures, sources, production, and nutritional functions, Trends Food Sci. Technol. 122 (2022) 1-12. https://doi.org/10.1016/j.tifs.2022.02.013.

[110]

B.A. Katsnelson, L.I. Privalova, M.P. Sutunkova, et al., Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview), Int. J. Nanomedicine 10 (2015) 3013-3029. https://doi.org/10.2147/ijn.S80843.

[111]

D. Qin, S. Han, M. Liu, et al., Polysaccharides from Phellinus linteus: a systematic review of their extractions, purifications, structures and functions, Int. J. Biol. Macromol. 230 (2023) 123163. https://doi.org/10.1016/j.ijbiomac.2023.123163.

[112]

R. Chen, J. Xu, W. Wu, et al., Structure-immunomodulatory activity relationships of dietary polysaccharides, Current Research in Food Science 5 (2022) 1330-1341. https://doi.org/10.1016/j.crfs.2022.08.016.

[113]

W. Tang, Y. Zhang, Y. Wang, et al., Preparation and alcohol detoxication activities of the sulfated Hippophae rhamnoides L. leaf polysaccharide, Food R&D. 40 (2019) 47-51.

[114]

X. Jia, L. Ma, P. Li, et al., Prospects of Poria cocos polysaccharides: isolation process, structural features and bioactivities, Trends Food Sci. Technol. 54 (2016) 52-62. https://doi.org/10.1016/j.tifs.2016.05.021.

[115]

R. Zhong, X. Wan, D. Wang, et al., Polysaccharides from marine Enteromorpha: structure and function, Trends Food Sci. Technol. 99 (2020) 11-20. https://doi.org/10.1016/j.tifs.2020.02.030.

[116]

Y.F. Zou, Y.Y. Zhang, B.S. Paulsen, et al., Prospects of Codonopsis pilosula polysaccharides: structural features and bioactivities diversity, Trends Food Sci. Technol. 103 (2020) 1-11. https://doi.org/10.1016/j.tifs.2020.06.012.

[117]

Y. Zhu, M. Wu, X. Li, et al., Flash extraction, characterization, and immunoenhancement activity of polysaccharide from Hippophae rhamnoides Linn, Chem. Biodivers. 20 (2023) e202200776. https://doi.org/10.1002/cbdv.202200776.

Food Science and Human Wellness
Article number: 9250001
Cite this article:
Shi S, Wu R, Han Z, et al. Prospects of sea buckthorn (Hippophae rhamnoides L.) polysaccharides: preparation, structural characterization, and bioactivities diversity. Food Science and Human Wellness, 2025, 14(1): 9250001. https://doi.org/10.26599/FSHW.2024.9250001
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return