PDF (6.7 MB)
Collect
Submit Manuscript
Open Access

Lactobacillus acidophilus FCQHC4L1 strengthens the intestinal mucus barrier and inhibits endoplasmic reticulum stress

Yuli Qia,bLeilei Yua,bFengwei Tiana,bWei Chena,b,cXiaoming Liua,b()Qixiao Zhaia,b()
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

· Dead bacteria or CM of different LAB strains affected Muc2 gene expression differently.

· CM of L. acidophilus FCQHC4L1 significantly increased the transcription of MUC2.

· FCQHC4L1 strengthened the intestinal mucus barrier in DSS-induced IBD mice.

· FCQHC4L1 significantly inhibited DSS-induced colitis development.

· CM of FCQHC4L1 inhibited ER stress and ameliorated the abnormal expression of MUC2.

Graphical Abstract

View original image Download original image

Abstract

Mucin 2 (MUC2) is a critical component of the intestinal mucus barrier. Lactic acid bacteria (LAB) strains can improve mucosal homeostasis. In this study, we determined the expression of Muc2 induced by dead bacteria and cell-free conditioned medium (CM) of 50 LAB strains in the human goblet cell line, LS174T. Dead bacteria or CM of LAB affected the Muc2 expression in a species- and strain-specific manner under homeostasis. Next, LAB strains with different regulatory abilities were selected, gavaged into mice, and exposed to dextran sodium sulfate (DSS) after 1 week. Different LAB strains inhibited intestinal injury to different degrees, with Lactobacillus acidophilus FCQHC4L1 exerting the most potent effect. FCQHC4L1 significantly decreased the secretion of pro-inflammatory factors, promoted the expression and secretion of mucin, and inhibited colitis development. This strain also regulated the gut microbiota and increased the secretion of butyric acid. Moreover, CM of FCQHC4L1 inhibited endoplasmic reticulum (ER) stress and ameliorated the abnormal expression of MUC2 by suppressing the activation of the GRP78/ATF6 and GRP78/IRE1/XBP1 signaling pathways. Our results highlight the potential of FCQHC4L1 as a therapeutic agent for strengthening the mucus barrier and improving the gut health.

Electronic Supplementary Material

Download File(s)
fshw-14-1-9250005_ESM.xlsx (13.6 KB)

References

[1]

C. Chelakkot, J. Ghim, S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med. 50 (2018) 1-9. https://doi.org/10.1038/s12276-018-0126-x.

[2]

J.R. Turner, Intestinal mucosal barrier function in health and disease, Nat. Rev. Immunol. 9 (2009) 799-809. https://doi.org/10.1038/nri2653.

[3]

E.E.L. Nyström, G.M.H. Birchenough, S. van der Post, et al., Calcium-activated chloride channel regulator 1 (CLCA1) controls mucus expansion in colon by proteolytic activity, eBioMedicine 33 (2018) 134-143. https://doi.org/10.1016/j.ebiom.2018.05.031.

[4]

M.E.V. Johansson, J.M.H. Larsson, G.C. Hansson, The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions, Proc. Natl. Acad. Sci. USA 108 (2011) 4659-4665. https://doi.org/10.1073/pnas.1006451107.

[5]

P. Paone, P.D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners?, Gut 69 (2020) 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260.

[6]

H. Melhem, D. Regan-Komito, J.H. Niess, Mucins dynamics in physiological and pathological conditions, IJMS 22 (2021) 13642. https://doi.org/10.3390/ijms222413642.

[7]

T. Pelaseyed, J.H. Bergström, J.K. Gustafsson, et al., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system, Immunol. Rev. 260 (2014) 8-20. https://doi.org/10.1111/imr.12182.

[8]

B.O. Schroeder, G.M.H. Birchenough, M. Ståhlman, et al., Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration, Cell Host Microbe. 23 (2018) 27-40. https://doi.org/10.1016/j.chom.2017.11.004.

[9]

B. Chassaing, C. Compher, B. Bonhomme, et al., Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome, Gastroenterology 162 (2022) 743-756. https://doi.org/10.1053/j.gastro.2021.11.006.

[10]

S. Cornick, A. Tawiah, K. Chadee, Roles and regulation of the mucus barrier in the gut, Tissue Barriers 3 (2015) e982426. https://doi.org/10.4161/21688370.2014.982426.

[11]

K.S.B. Bergstrom, V. Kissoon-Singh, D.L. Gibson, et al., Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa, PLoS Pathog. 6 (2010) e1000902. https://doi.org/10.1371/journal.ppat.1000902.

[12]

S. van der Post, K.S. Jabbar, G. Birchenough, et al., Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis, Gut 68 (2019) 2142-2151. https://doi.org/10.1136/gutjnl-2018-317571.

[13]

C. Caballero-Franco, K. Keller, C. de Simone, et al., The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells, Am. J. Physiol-Gastr. L. 292 (2007) G315-G322. https://doi.org/10.1152/ajpgi.00265.2006.

[14]

M.A. Engevik, B. Luk, A.L. Chang-Graham, et al., Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways, MBio. 10 (2019) e01087-19. https://doi.org/10.1128/mBio.01087-19.

[15]

H. Wu, L. Ye, X. Lu, et al., Lactobacillus acidophilus alleviated Salmonella-induced goblet cells loss and colitis by notch pathway, Mol. Nutr. Food Res. 62 (2018) 1800552. https://doi.org/10.1002/mnfr.201800552.

[16]

D.S.G. Nielsen, B.B. Jensen, P.K. Theil, et al., Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line, J. Funct. Foods 40 (2018) 9-17. https://doi.org/10.1016/j.jff.2017.10.023.

[17]

J. Li, L. Zhang, T. Wu, et al., Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier, J. Agric. Food Chem. 69 (2021) 1487-1495. https://doi.org/10.1021/acs.jafc.0c05205.

[18]

S.A. Scott, J. Fu, P.V. Chang, Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor, Proc. Natl. Acad. Sci. USA 117 (2020) 19376-19387. https://doi.org/10.1073/pnas.2000047117.

[19]

X. Zhou, K. Zhang, W. Qi, et al., Exopolysaccharides from Lactobacillus plantarum NCU116 enhances colonic mucosal homeostasis by controlling epithelial cell differentiation and c-Jun/Muc2 signaling, J. Agric. Food Chem. 67 (2019) 9831-9839. https://doi.org/10.1021/acs.jafc.9b03939.

[20]

P. Plaisancié, J. Claustre, M. Estienne, et al., A novel bioactive peptide from yoghurts modulates expression of the gel-forming MUC2 mucin as well as population of goblet cells and Paneth cells along the small intestine, J. Nutr. Biochem. 24 (2013) 213-221. https://doi.org/10.1016/j.jnutbio.2012.05.004.

[21]

L. Song, T. Wu, L. Zhang, et al., Chlorogenic acid improves the intestinal barrier by relieving endoplasmic reticulum stress and inhibiting ROCK/MLCK signaling pathways, Food Funct. 13 (2022) 4562-4575. https://doi.org/10.1039/D1FO02662C.

[22]

P. Paone, F. Suriano, C. Jian, et al., Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion, Gut Microbes. 14 (2022) 2152307. https://doi.org/10.1080/19490976.2022.2152307.

[23]

N. Navabi, M.A. McGuckin, S.K. Lindén, Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation, PLoS One 8 (2013) e68761. https://doi.org/10.1371/journal.pone.0068761.

[24]

B.H. Tom, L.P. Rutzky, M.M. Jakstys, et al., Human colonic adenocarcinoma cells, In Vitro 12 (1976) 180-191. https://doi.org/10.1007/BF02796440.

[25]

J. Byrd, J. Nardelli, B. Siddiqui, et al., Isolation and characterization of colon cancer mucin from xenografts of LS174T cells, Cancer Res. 48 (1989) 6678-6685.

[26]

S.S. Cao, E.M. Zimmermann, B. Chuang, et al., The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice, Gastroenterology. 144 (2013) 989-1000. https://doi.org/10.1053/j.gastro.2013.01.023.

[27]

S.Z. Hasnain, S. Tauro, I. Das, et al., IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells, Gastroenterology 144 (2013) 357-368. https://doi.org/10.1053/j.gastro.2012.10.043.

[28]

L. Pan, Polysaccharide from edible alga Gloiopeltis furcata attenuates intestinal mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans, Carbohydr. Polym. 278 (2022) 118921. https://doi.org/10.1016/j.carbpol.2021.118921.

[29]

Y. Chen, Y. Jin, C. Stanton, et al., Dose-response efficacy and mechanisms of orally administered CLA-producing Bifidobacterium breve CCFM683 on DSS-induced colitis in mice, J. Funct. Foods. 75 (2020) 104245. https://doi.org/10.1016/j.jff.2020.104245.

[30]

E. Bolyen, J.R. Rideout, M.R. Dillon, et al., Reproducible, interactive, scalable and extensible microbiome data science using QⅡME 2, Nat. Biotechnol. 37 (2019) 852-857. https://doi.org/10.1038/s41587-019-0209-9.

[31]

L. Yu, X. Han, S. Cen, et al., Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota, Microbiol. Res. 233 (2020) 126409. https://doi.org/10.1016/j.micres.2020.126409.

[32]

H. Mathur, T.P. Beresford, P.D. Cotter, Health benefits of lactic acid bacteria (LAB) fermentates, Nutrients 12 (2020) 1679. https://doi.org/10.3390/nu12061679.

[33]

T. Teame, A. Wang, M. Xie, et al., Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: a review, Front. Nutr. 7 (2020) 570344. https://www.frontiersin.org/articles/10.3389/fnut.2020.570344.

[34]

S. Salminen, M.C. Collado, A. Endo, et al., The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 649-667. https://doi.org/10.1038/s41575-021-00440-6.

[35]

M. Shinoda, M. Shin-Ya, Y. Naito, et al., Early-stage blocking of Notch signaling inhibits the depletion of goblet cells in dextran sodium sulfate-induced colitis in mice, J. Gastroenterol. 45 (2010) 608-617. https://doi.org/10.1007/s00535-010-0210-z.

[36]

Y. Yu, L. Lu, J. Sun, et al., Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model, Am. J. Physiol-Gastr. L. 311 (2016) G521-G532. https://doi.org/10.1152/ajpgi.00022.2016.

[37]

A. Gregorieff, D.E. Stange, P. Kujala, et al., The Ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium, Gastroenterology 137 (2009) 1333-1345. https://doi.org/10.1053/j.gastro.2009.06.044.

[38]

C. Ren, J. Dokter-Fokkens, S. Figueroa Lozano, et al., Lactic acid bacteria may impact intestinal barrier function by modulating goblet cells, Mol. Nutr. Food Res. 62 (2018) 1700572. https://doi.org/10.1002/mnfr.201700572.

[39]

H. Lee, K.B. Jung, O. Kwon, et al., Limosilactobacillus reuteri DS0384 promotes intestinal epithelial maturation via the postbiotic effect in human intestinal organoids and infant mice, Gut Microbes 14 (2022) 2121580. https://doi.org/10.1080/19490976.2022.2121580.

[40]

M.A.B. Axelsson, N. Asker, G.C. Hansson, O-Glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds, J. Biol. Chem. 273 (1998) 18864-18870. https://doi.org/10.1074/jbc.273.30.18864.

[41]

J.H. Klinkspoor, K.S. Mok, B.J.W. van Klinken, et al., Mucin secretion by the human colon cell line LS174T is regulated by bile salts, Glycobiology 9 (1999) 13-19. https://doi.org/10.1093/glycob/9.1.13.

[42]

L. Liang, L. Liu, W. Zhou, et al., Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway, Clin. Sci. 136 (2022) 291-307. https://doi.org/10.1042/CS20210778.

[43]

D. Ahl, H. Liu, O. Schreiber, et al., Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice, Acta Physiologica. 217 (2016) 300-310. https://doi.org/10.1111/apha.12695.

[44]

B. Chassaing, J.D. Aitken, M. Malleshappa, et al., Dextran sulfate sodium (DSS)-induced colitis in mice, Current Protocols in Bioinformatics 104 (2014) 15-25. https://doi.org/10.1002/0471142735.im1525s104.

[45]

D. Yao, MUC2 and related bacterial factors: therapeutic targets for ulcerative colitis, eBioMedicine 74 (2021) 103751. https://doi.org/10.1016/j.ebiom.2021.103751.

[46]

M. Sasaki, J.M.A. Klapproth, The role of bacteria in the pathogenesis of ulcerative colitis, J. Signal Transduct. 2012 (2012) 704953. https://doi.org/10.1155/2012/704953.

[47]

T.C. Fung, H.E. Vuong, C.D.G. Luna, et al., Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut, Nat. Microbiol. 4 (2019) 2064-2073. https://doi.org/10.1038/s41564-019-0540-4.

[48]

P. Rausch, N. Steck, A. Suwandi, et al., Expression of the blood-group-related gene B4galnt2 alters susceptibility to Salmonella infection, PLoS Pathog. 11 (2015) e1005008. https://doi.org/10.1371/journal.ppat.1005008.

[49]

Y. Chung, Y. Ryu, B.C. An, et al., A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota, Microbiome 9 (2021) 122. https://doi.org/10.1186/s40168-021-01071-4.

[50]

M.R. Wu, T.S. Chou, C.Y. Huang, et al., A potential probiotic-Lachnospiraceae NK4A136 group: evidence from the restoration of the dietary pattern from a high-fat diet, Res. Sq. (2020). https://doi.org/10.21203/rs.3.rs-48913/v1.

[51]

P. Louis, H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine, FEMS Microbiol. Lett. 294 (2009) 1-8. https://doi.org/10.1111/j.1574-6968.2009.01514.x.

[52]

S. Facchin, N. Vitulo, M. Calgaro, et al., Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease, Neurogastroenterol Motil. 32 (2020) e13914. https://doi.org/10.1111/nmo.13914.

[53]

C. Song, J. Chen, X. Li, et al., Limonin ameliorates dextran sulfate sodium-induced chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling, Int. Immunopharmacol. 90 (2021) 107161. https://doi.org/10.1016/j.intimp.2020.107161.

[54]

J. Dong, K. Xia, W. Liang, et al., Ginsenoside Rb1 alleviates colitis in mice via activation of endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 signaling pathway, Acta Pharmacol. Sin. 42 (2021) 1461-1471. https://doi.org/10.1038/s41401-020-00561-9.

[55]

S. Yin, L. Li, Y. Tao, et al., The inhibitory effect of artesunate on excessive endoplasmic reticulum stress alleviates experimental colitis in mice, Front. Pharmacol. 12 (2021) 629798. https://doi.org/10.3389/fphar.2021.629798.

[56]

R. Xiong, D. Pan, Z. Wu, et al., Structure and immunomodulatory activity of a recombinant mucus-binding protein of Lactobacillus acidophilus, Future Microbiol. 13 (2018) 1731-1743. https://doi.org/10.2217/fmb-2018-0222.

Food Science and Human Wellness
Article number: 9250005
Cite this article:
Qi Y, Yu L, Tian F, et al. Lactobacillus acidophilus FCQHC4L1 strengthens the intestinal mucus barrier and inhibits endoplasmic reticulum stress. Food Science and Human Wellness, 2025, 14(1): 9250005. https://doi.org/10.26599/FSHW.2024.9250005
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return