PDF (5.2 MB)
Collect
Submit Manuscript
Show Outline
Figures (11)

Show 2 more figures Hide 2 figures
Tables (1)
Table 1
Open Access

Dendrobium officinale polysaccharide attenuates type 2 diabetes in mice model by modulating gut microbiota and alleviating intestinal mucosal barrier damage

Xiaoxia ChenaChun Chena,b,c,d()Changyang MaeWenyi KangeJunlin Wuf()Xiong Fua,b,c,d
Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China
Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Guangzhou Wondfo Health Science and Technology Co., Ltd., Guangzhou 510640, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

The purpose of this study was to investigate the hypoglycemic effect and mechanism of Dendrobium officinale polysaccharide (DOP) on type 2 diabetes mellitus (T2DM) mice established by high-fat diet and streptozotocin. The results showed that DOP improved glycolipid metabolism and serum inflammation levels, and inhibited intestinal-derived lipopolysaccharide (LPS) translocation, suggesting that inhibiting LPS-mediated intestinal barrier damage may be a key target for DOP to alleviate T2DM. Interestingly, the study found that DOP reduced intestinal inflammation and oxidative stress levels, significantly up-regulated the mRNA expression of tight junction proteins Claudin-1, Occludin and zonula occluden-1 (ZO-1), and ameliorated intestinal epithelial damage. In addition, DOP strongly inhibited the intestinal pathogenic bacteria and LPS-producing bacteria Helicobacter, Enterococcus and Desulfovibrio with a reduction rate of 95%, 73% and 9%, respectively, and promoted the proliferation of anti-inflammatory bacteria Bifidobacterium and Lactobacillus by 139% and 8%, respectively. Taken together, the hypoglycemic effect of DOP was related to the protection of intestinal mucosal barrier, and its underlying mechanism lied in its excellent anti-inflammatory and gut microbiota-modulatory effects, providing a theoretical basis for developing DOP as a novel prebiotic in functional food for diabetes.

Electronic Supplementary Material

Download File(s)
fshw-14-1-9250007_ESM.docx (140.9 KB)

References

[1]

L. Xu, Y. Li, Y. Dai, et al., Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms, Pharmacol. Res. 130 (2018) 451-465. https://doi.org/10.1016/j.phrs.2018.01.015.

[2]

M. Alipour, H. Rostami, K. Parastouei, Association between inflammatory obesity phenotypes, FTO-rs9939609, and cardiovascular risk factors in patients with type 2 diabetes, J. Res. Me. Sci. 25 (2020) 1-7. https://doi.org/10.4103/jrms.JRMS_429_19.

[3]

C. Chen, B. Zhang, Q. Huang, et al., Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: characterization and hypoglycemic activity, Ind. Crop. Prod. 100 (2017) 1-11. https://doi.org/10.1016/j.indcrop.2017.01.042.

[4]

K. Ogurtsova, L. Guariguata, N.C. Barengo, et al., IDF diabetes Atlas: global estimates of undiagnosed diabetes in adults for 2021, Diabetes Res. Clin. Pr. 183 (2022) 109118. https://doi.org/10.1016/j.diabres.2021.109118.

[5]

C. Chen, L.J. You, A.M. Abbasi, et al., Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro, Food Funct. 7 (2016) 530-539. https://doi.org/10.1039/c5fo01114k.

[6]

C. Chen, L.J. You, A.M. Abbasi, et al., Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro, Carbohyd. Polym. 130 (2015) 122-132. https://doi.org/10.1016/j.carbpol.2015.05.003.

[7]

X.X. Chen, C. Chen, X. Fu, Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from Astragalus membranaceus, Food Funct. 13 (2022) 11210-11222. https://doi.org/10.1039/d2fo02298b.

[8]

P.D. Cani, A.M. Neyrinck, F. Fava, et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, Diabetologia 50 (2007) 2374-2383. https://doi.org/10.1007/s00125-007-0791-0.

[9]

V. Tremaroli, F. Backhed, Functional interactions between the gut microbiota and host metabolism, Nature 489 (2012) 242-249. https://doi.org/10.1038/nature11552.

[10]

C. He, Y. Shan, W. Song, Targeting gut microbiota as a possible therapy for diabetes, Nutr. Res. 35 (2015) 361-367. https://doi.org/10.1016/j.nutres.2015.03.002.

[11]

K. Li, L. Zhang, J. Xue, et al., Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice, Food Funct. 10 (2019) 1915-1927. https://doi.org/10.1039/c8fo02265h.

[12]

M.K. Hamilton, G. Boudry, D.G. Lemay, et al., Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent, Am. J. Physiol-Gastr. L. 308 (2015) G840-G851. https://doi.org/10.1152/ajpgi.00029.2015.

[13]

J. Amar, C. Chabo, A. Waget, et al., Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment, Embo. Mol. Med. 3 (2011) 559-572. https://doi.org/10.1002/emmm.201100159.

[14]

X. Liu, H. Zhu, Curcumin improved intestinal epithelial barrier integrity by up-regulating ZO-1/Occludin/Claudin-1 in septic rats, Evid.-based Compl. Alt. 2022 (2022) 2884522. https://doi.org/10.1155/2022/2884522.

[15]

J.N. Losso, Food processing, dysbiosis, gastrointestinal inflammatory diseases, and antiangiogenic functional foods or beverages, Annu. Rev. Food Sci. T. 12 (2021) 235-258. https://doi.org/10.1146/annurev-food-062520-090235.

[16]

A. Sircana, L. Framarin, N. Leone, et al., Altered gut microbiota in type 2 diabetes: just a coincidence?, Curr. Diabetes Rep. 18 (2018) 98 https://doi.org/10.1007/s11892-018-1057-6.

[17]

E.J. Kim, T.S. Sohn, H.H. Choi, et al., High levels of Akkermansia muciniphilia growth associated with spring water ingestion prevents obesity and hyperglycemia in a high-fat diet-induced mouse model, Nat. Prod. Commun. 17 (2022) 1-9. https://doi.org/10.1177/1934578x221111037.

[18]

X. Chen, C. Chen, X. Fu, Hypoglycemic effect of the polysaccharides from Astragalus membranaceus on type 2 diabetic mice based on the “gut microbiota-mucosal barrier”, Food Funct. 13 (2022) 10121-10133. https://doi.org/10.1039/d2fo02300h.

[19]

L. Zhu, J. Li, C. Wei, et al., A polysaccharide from Fagopyrum esculentum Moench bee pollen alleviates microbiota dysbiosis to improve intestinal barrier function in antibiotic-treated mice, Food Funct. 11 (2020) 10519-10533. https://doi.org/10.1039/d0fo01948h.

[20]

T.R. Wu, C.S. Lin, C.J. Chang, et al., Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis, Gut 68 (2019) 248-262. https://doi.org/10.1136/gutjnl-2017-315458.

[21]

C. Chen, X. Fu, Spheroidization on Fructus Mori polysaccharides to enhance bioavailability and bioactivity by anti-solvent precipitation method, Food Chem. 300 (2019) 125245. https://doi.org/10.1016/j.foodchem.2019.125245.

[22]

X.J. Huang, S.P. Nie, H.L. Cai, et al., Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): part IV. immunomodulatory activity in vivo, J. Funct. Foods 15 (2015) 525-532. https://doi.org/10.1016/j.jff.2015.03.054.

[23]

X. Xu, C. Zhang, N. Wang, et al., Bioactivities and mechanism of actions of Dendrobium officinale: a comprehensive review, Oxid. Med Cell. Longev. 2022 (2022) 6293355. https://doi.org/10.1155/2022/6293355.

[24]

G.Y. Lü, M.Q. Yan, S.H. Chen, Review of pharmacological activities of Dendrobium officinale based on traditional functions, China J. Chin. Mater. Med. 38 (2013) 489-493. https://doi.org/10.4268/cjcmm20130405.

[25]

W. Chen, L. Yu, B. Zhu, et al., Dendrobium officinale endophytes may colonize the intestinal tract and regulate gut microbiota in mice, Evid.-based Compl. Alt. 2022 (2022) 2607506. https://doi.org/10.1155/2022/2607506.

[26]

W.H. Chen, J.J. Wu, X.F. Li, et al., Isolation, structural properties, bioactivities of polysaccharides from Dendrobium officinale Kimura et. Migo: a review, Int. J. Biol. Macromol. 184 (2021) 1000-1013. https://doi.org/10.1016/j.ijbiomac.2021.06.156.

[27]

Z. Yu, Z. Yang, J.A.T. da Silva, et al., Influence of low temperature on physiology and bioactivity of postharvest Dendrobium officinale stems, Postharvest Biol. Tec. 148 (2019) 97-106. https://doi.org/10.1016/j.postharvbio.2018.10.014.

[28]

L. Guo, J. Qi, D. Du, et al., Current advances of Dendrobium officinale polysaccharides in dermatology: a literature review, Pharm. Biol. 58 (2020) 664-673. https://doi.org/10.1080/13880209.2020.1787470.

[29]

Z.M. Dou, C. Chen, Q. Huang, et al., Comparative study on the effect of extraction solvent on the physicochemical properties and bioactivity of blackberry fruit polysaccharides, Int. J. Biol. Macromol. 183 (2021) 1548-1559. https://doi.org/10.1016/j.ijbiomac.2021.05.131.

[30]

J. Niu, G. Xu, S. Jiang, et al., In vitro antioxidant activities and anti-diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes, Int. J. Biol. Macromol. 94 (2017) 154-160. https://doi.org/10.1016/j.ijbiomac.2016.10.015.

[31]

X. Wei, B. Yang, G. Chen, et al., Zanthoxylumalkylamides improve amino acid metabolism in type 2 diabetes mellitus rats, J. Food Biochem. 44 (2020) e13441. https://doi.org/10.1111/jfbc.13441.

[32]

K. Srinivasan, B. Viswanad, L. Asrat, et al., Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening, Pharmacol. Res. 52 (2005) 313-320. https://doi.org/10.1016/j.phrs.2005.05.004.

[33]

K. Rehman, M.S.H. Akash, Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked?, J. Biomed. Sci. 23 (2016) 1-18. https://doi.org/10.1186/s12929-016-0303-y.

[34]

K.E. Wellen, G.S. Hotamisligil, Inflammation, stress, and diabetes, J. Clin. Invest. 115 (2005) 1111-1119. https://doi.org/10.1172/JCI25102.

[35]

H. Wang, W. Zhang, L. Zuo, et al., Intestinal dysbacteriosis contributes to decreased intestinal mucosal barrier function and increased bacterial translocation, Lett. Appl. Microbiol. 58 (2014) 384-392. https://doi.org/10.1111/lam.12201.

[36]

L.H. Han, T.G. Li, M. Du, et al., Beneficial effects of Potentilla discolor Bunge water extract on inflammatory cytokines release and gut microbiota in high-fat diet and streptozotocin-induced type 2 diabetic mice, Nutrients 11 (2019) 670. https://doi.org/10.3390/nu11030670.

[37]

W. Zhang, J.H. Xu, T. Yu, et al., Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice, Biomed. Pharmacother. 118 (2019) 109131. https://doi.org/10.1016/j.biopha.2019.109131.

[38]

V.J. Carrion, J. Perez-Jaramillo, V. Cordovez, et al., Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome, Science 366 (2019) 606-612. https://doi.org/10.1126/science.aaw9285.

[39]

G.M. de Waal, W.J.S. de Villiers, E. Pretorius, The link between bacterial inflammagens, leaky gut syndrome and colorectal cancer, Curr. Med. Chem. 28 (2021) 8534-8548. https://doi.org/10.2174/0929867328666210219142737.

[40]

L. Shen, L. Ao, H. Xu, et al., Poor short-term glycemic control in patients with type 2 diabetes impairs the intestinal mucosal barrier: a prospective, single-center, observational study, BMC Endocr. Disord. 19 (2019) 1-6. https://doi.org/10.1186/s12902-019-0354-7.

[41]

B. Zheng, M. Ying, J. Xie, et al., A Ganoderma atrum polysaccharide alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier, Food Funct. 11 (2020) 10690-10699. https://doi.org/10.1039/d0fo02260h.

[42]

S. Akashi-Takamura, K. Miyake, TLR accessory molecules, Curr. Opin. Immunol. 20 (2008) 420-425. https://doi.org/10.1016/j.coi.2008.07.001.

[43]

M.C. Wolvekamp, R.W. de Bruin, Diamine oxidase: an overview of historical, biochemical and functional aspects, Digest. Dis. 12 (1994) 2-14. https://doi.org/10.1159/000171432.

[44]

M.L. Xue, X.Q. Ji, H. Liang, et al., The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer, Food Funct. 9 (2018) 1214-1223. https://doi.org/10.1039/c7fo01677h.

[45]

A. Andreadi, A. Bellia, N. di Daniele, et al., The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: a target for new therapies against cardiovascular diseases, Curr. Opin. Pharmacol. 62 (2022) 85-96. https://doi.org/10.1016/j.coph.2021.11.010.

[46]

G. Rizzatti, L.R. Lopetuso, G. Gibiino, et al., Proteobacteria: a common factor in human diseases, Biomed Res. Int. 2017 (2017) 9351507. https://doi.org/10.1155/2017/9351507.

[47]

S. Aydemir, T. Bayraktaroglu, M. Sert, et al., The effect of Helicobacter pylori on insulin resistance, Digest. Dis. Sci. 50 (2005) 2090-2093. https://doi.org/10.1007/s10620-005-3012-z.

[48]

C. Zhang, M. Zhang, S. Wang, et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice, Isme J. 4 (2010) 232-241. https://doi.org/10.1038/ismej.2009.112.

[49]

J. Qin, Y. Li, Z. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. https://doi.org/10.1038/nature11450.

[50]

S. Resta-Lenert, K.E. Barrett, Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells, Gastroenterology 130 (2006) 731-746. https://doi.org/10.1053/j.gastro.2005.12.015.

Food Science and Human Wellness
Article number: 9250007
Cite this article:
Chen X, Chen C, Ma C, et al. Dendrobium officinale polysaccharide attenuates type 2 diabetes in mice model by modulating gut microbiota and alleviating intestinal mucosal barrier damage. Food Science and Human Wellness, 2025, 14(1): 9250007. https://doi.org/10.26599/FSHW.2024.9250007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return