The purpose of this study was to investigate the hypoglycemic effect and mechanism of Dendrobium officinale polysaccharide (DOP) on type 2 diabetes mellitus (T2DM) mice established by high-fat diet and streptozotocin. The results showed that DOP improved glycolipid metabolism and serum inflammation levels, and inhibited intestinal-derived lipopolysaccharide (LPS) translocation, suggesting that inhibiting LPS-mediated intestinal barrier damage may be a key target for DOP to alleviate T2DM. Interestingly, the study found that DOP reduced intestinal inflammation and oxidative stress levels, significantly up-regulated the mRNA expression of tight junction proteins Claudin-1, Occludin and zonula occluden-1 (ZO-1), and ameliorated intestinal epithelial damage. In addition, DOP strongly inhibited the intestinal pathogenic bacteria and LPS-producing bacteria Helicobacter, Enterococcus and Desulfovibrio with a reduction rate of 95%, 73% and 9%, respectively, and promoted the proliferation of anti-inflammatory bacteria Bifidobacterium and Lactobacillus by 139% and 8%, respectively. Taken together, the hypoglycemic effect of DOP was related to the protection of intestinal mucosal barrier, and its underlying mechanism lied in its excellent anti-inflammatory and gut microbiota-modulatory effects, providing a theoretical basis for developing DOP as a novel prebiotic in functional food for diabetes.
L. Xu, Y. Li, Y. Dai, et al., Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms, Pharmacol. Res. 130 (2018) 451-465. https://doi.org/10.1016/j.phrs.2018.01.015.
M. Alipour, H. Rostami, K. Parastouei, Association between inflammatory obesity phenotypes, FTO-rs9939609, and cardiovascular risk factors in patients with type 2 diabetes, J. Res. Me. Sci. 25 (2020) 1-7. https://doi.org/10.4103/jrms.JRMS_429_19.
C. Chen, B. Zhang, Q. Huang, et al., Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: characterization and hypoglycemic activity, Ind. Crop. Prod. 100 (2017) 1-11. https://doi.org/10.1016/j.indcrop.2017.01.042.
K. Ogurtsova, L. Guariguata, N.C. Barengo, et al., IDF diabetes Atlas: global estimates of undiagnosed diabetes in adults for 2021, Diabetes Res. Clin. Pr. 183 (2022) 109118. https://doi.org/10.1016/j.diabres.2021.109118.
C. Chen, L.J. You, A.M. Abbasi, et al., Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro, Food Funct. 7 (2016) 530-539. https://doi.org/10.1039/c5fo01114k.
C. Chen, L.J. You, A.M. Abbasi, et al., Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro, Carbohyd. Polym. 130 (2015) 122-132. https://doi.org/10.1016/j.carbpol.2015.05.003.
X.X. Chen, C. Chen, X. Fu, Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from Astragalus membranaceus, Food Funct. 13 (2022) 11210-11222. https://doi.org/10.1039/d2fo02298b.
P.D. Cani, A.M. Neyrinck, F. Fava, et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, Diabetologia 50 (2007) 2374-2383. https://doi.org/10.1007/s00125-007-0791-0.
V. Tremaroli, F. Backhed, Functional interactions between the gut microbiota and host metabolism, Nature 489 (2012) 242-249. https://doi.org/10.1038/nature11552.
C. He, Y. Shan, W. Song, Targeting gut microbiota as a possible therapy for diabetes, Nutr. Res. 35 (2015) 361-367. https://doi.org/10.1016/j.nutres.2015.03.002.
K. Li, L. Zhang, J. Xue, et al., Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice, Food Funct. 10 (2019) 1915-1927. https://doi.org/10.1039/c8fo02265h.
M.K. Hamilton, G. Boudry, D.G. Lemay, et al., Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent, Am. J. Physiol-Gastr. L. 308 (2015) G840-G851. https://doi.org/10.1152/ajpgi.00029.2015.
J. Amar, C. Chabo, A. Waget, et al., Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment, Embo. Mol. Med. 3 (2011) 559-572. https://doi.org/10.1002/emmm.201100159.
X. Liu, H. Zhu, Curcumin improved intestinal epithelial barrier integrity by up-regulating ZO-1/Occludin/Claudin-1 in septic rats, Evid.-based Compl. Alt. 2022 (2022) 2884522. https://doi.org/10.1155/2022/2884522.
J.N. Losso, Food processing, dysbiosis, gastrointestinal inflammatory diseases, and antiangiogenic functional foods or beverages, Annu. Rev. Food Sci. T. 12 (2021) 235-258. https://doi.org/10.1146/annurev-food-062520-090235.
A. Sircana, L. Framarin, N. Leone, et al., Altered gut microbiota in type 2 diabetes: just a coincidence?, Curr. Diabetes Rep. 18 (2018) 98 https://doi.org/10.1007/s11892-018-1057-6.
E.J. Kim, T.S. Sohn, H.H. Choi, et al., High levels of Akkermansia muciniphilia growth associated with spring water ingestion prevents obesity and hyperglycemia in a high-fat diet-induced mouse model, Nat. Prod. Commun. 17 (2022) 1-9. https://doi.org/10.1177/1934578x221111037.
X. Chen, C. Chen, X. Fu, Hypoglycemic effect of the polysaccharides from Astragalus membranaceus on type 2 diabetic mice based on the “gut microbiota-mucosal barrier”, Food Funct. 13 (2022) 10121-10133. https://doi.org/10.1039/d2fo02300h.
L. Zhu, J. Li, C. Wei, et al., A polysaccharide from Fagopyrum esculentum Moench bee pollen alleviates microbiota dysbiosis to improve intestinal barrier function in antibiotic-treated mice, Food Funct. 11 (2020) 10519-10533. https://doi.org/10.1039/d0fo01948h.
T.R. Wu, C.S. Lin, C.J. Chang, et al., Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis, Gut 68 (2019) 248-262. https://doi.org/10.1136/gutjnl-2017-315458.
C. Chen, X. Fu, Spheroidization on Fructus Mori polysaccharides to enhance bioavailability and bioactivity by anti-solvent precipitation method, Food Chem. 300 (2019) 125245. https://doi.org/10.1016/j.foodchem.2019.125245.
X.J. Huang, S.P. Nie, H.L. Cai, et al., Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): part IV. immunomodulatory activity in vivo, J. Funct. Foods 15 (2015) 525-532. https://doi.org/10.1016/j.jff.2015.03.054.
X. Xu, C. Zhang, N. Wang, et al., Bioactivities and mechanism of actions of Dendrobium officinale: a comprehensive review, Oxid. Med Cell. Longev. 2022 (2022) 6293355. https://doi.org/10.1155/2022/6293355.
G.Y. Lü, M.Q. Yan, S.H. Chen, Review of pharmacological activities of Dendrobium officinale based on traditional functions, China J. Chin. Mater. Med. 38 (2013) 489-493. https://doi.org/10.4268/cjcmm20130405.
W. Chen, L. Yu, B. Zhu, et al., Dendrobium officinale endophytes may colonize the intestinal tract and regulate gut microbiota in mice, Evid.-based Compl. Alt. 2022 (2022) 2607506. https://doi.org/10.1155/2022/2607506.
W.H. Chen, J.J. Wu, X.F. Li, et al., Isolation, structural properties, bioactivities of polysaccharides from Dendrobium officinale Kimura et. Migo: a review, Int. J. Biol. Macromol. 184 (2021) 1000-1013. https://doi.org/10.1016/j.ijbiomac.2021.06.156.
Z. Yu, Z. Yang, J.A.T. da Silva, et al., Influence of low temperature on physiology and bioactivity of postharvest Dendrobium officinale stems, Postharvest Biol. Tec. 148 (2019) 97-106. https://doi.org/10.1016/j.postharvbio.2018.10.014.
L. Guo, J. Qi, D. Du, et al., Current advances of Dendrobium officinale polysaccharides in dermatology: a literature review, Pharm. Biol. 58 (2020) 664-673. https://doi.org/10.1080/13880209.2020.1787470.
Z.M. Dou, C. Chen, Q. Huang, et al., Comparative study on the effect of extraction solvent on the physicochemical properties and bioactivity of blackberry fruit polysaccharides, Int. J. Biol. Macromol. 183 (2021) 1548-1559. https://doi.org/10.1016/j.ijbiomac.2021.05.131.
J. Niu, G. Xu, S. Jiang, et al., In vitro antioxidant activities and anti-diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes, Int. J. Biol. Macromol. 94 (2017) 154-160. https://doi.org/10.1016/j.ijbiomac.2016.10.015.
X. Wei, B. Yang, G. Chen, et al., Zanthoxylumalkylamides improve amino acid metabolism in type 2 diabetes mellitus rats, J. Food Biochem. 44 (2020) e13441. https://doi.org/10.1111/jfbc.13441.
K. Srinivasan, B. Viswanad, L. Asrat, et al., Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening, Pharmacol. Res. 52 (2005) 313-320. https://doi.org/10.1016/j.phrs.2005.05.004.
K. Rehman, M.S.H. Akash, Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked?, J. Biomed. Sci. 23 (2016) 1-18. https://doi.org/10.1186/s12929-016-0303-y.
K.E. Wellen, G.S. Hotamisligil, Inflammation, stress, and diabetes, J. Clin. Invest. 115 (2005) 1111-1119. https://doi.org/10.1172/JCI25102.
H. Wang, W. Zhang, L. Zuo, et al., Intestinal dysbacteriosis contributes to decreased intestinal mucosal barrier function and increased bacterial translocation, Lett. Appl. Microbiol. 58 (2014) 384-392. https://doi.org/10.1111/lam.12201.
L.H. Han, T.G. Li, M. Du, et al., Beneficial effects of Potentilla discolor Bunge water extract on inflammatory cytokines release and gut microbiota in high-fat diet and streptozotocin-induced type 2 diabetic mice, Nutrients 11 (2019) 670. https://doi.org/10.3390/nu11030670.
W. Zhang, J.H. Xu, T. Yu, et al., Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice, Biomed. Pharmacother. 118 (2019) 109131. https://doi.org/10.1016/j.biopha.2019.109131.
V.J. Carrion, J. Perez-Jaramillo, V. Cordovez, et al., Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome, Science 366 (2019) 606-612. https://doi.org/10.1126/science.aaw9285.
G.M. de Waal, W.J.S. de Villiers, E. Pretorius, The link between bacterial inflammagens, leaky gut syndrome and colorectal cancer, Curr. Med. Chem. 28 (2021) 8534-8548. https://doi.org/10.2174/0929867328666210219142737.
L. Shen, L. Ao, H. Xu, et al., Poor short-term glycemic control in patients with type 2 diabetes impairs the intestinal mucosal barrier: a prospective, single-center, observational study, BMC Endocr. Disord. 19 (2019) 1-6. https://doi.org/10.1186/s12902-019-0354-7.
B. Zheng, M. Ying, J. Xie, et al., A Ganoderma atrum polysaccharide alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier, Food Funct. 11 (2020) 10690-10699. https://doi.org/10.1039/d0fo02260h.
S. Akashi-Takamura, K. Miyake, TLR accessory molecules, Curr. Opin. Immunol. 20 (2008) 420-425. https://doi.org/10.1016/j.coi.2008.07.001.
M.C. Wolvekamp, R.W. de Bruin, Diamine oxidase: an overview of historical, biochemical and functional aspects, Digest. Dis. 12 (1994) 2-14. https://doi.org/10.1159/000171432.
M.L. Xue, X.Q. Ji, H. Liang, et al., The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer, Food Funct. 9 (2018) 1214-1223. https://doi.org/10.1039/c7fo01677h.
A. Andreadi, A. Bellia, N. di Daniele, et al., The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: a target for new therapies against cardiovascular diseases, Curr. Opin. Pharmacol. 62 (2022) 85-96. https://doi.org/10.1016/j.coph.2021.11.010.
G. Rizzatti, L.R. Lopetuso, G. Gibiino, et al., Proteobacteria: a common factor in human diseases, Biomed Res. Int. 2017 (2017) 9351507. https://doi.org/10.1155/2017/9351507.
S. Aydemir, T. Bayraktaroglu, M. Sert, et al., The effect of Helicobacter pylori on insulin resistance, Digest. Dis. Sci. 50 (2005) 2090-2093. https://doi.org/10.1007/s10620-005-3012-z.
C. Zhang, M. Zhang, S. Wang, et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice, Isme J. 4 (2010) 232-241. https://doi.org/10.1038/ismej.2009.112.
J. Qin, Y. Li, Z. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. https://doi.org/10.1038/nature11450.
S. Resta-Lenert, K.E. Barrett, Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells, Gastroenterology 130 (2006) 731-746. https://doi.org/10.1053/j.gastro.2005.12.015.