Chronic kidney disease (CKD) is one kind of illness with abnormal renal structure and function caused by many factors. Probiotics can be used to regulate intestinal microflora and enhance intestinal mucosal barrier, thus, intervention with probiotics may be regarded as one of the potential ways to protect against CKD. In vitro and in vivo experiments showed that Lactiplantibacillus plantarum MA2 (MA2), a probiotic separated from traditional Chinese Tibetan kefir grains, could degrade the uremic toxins including creatinine, urea nitrogen and uric acid. Oral administration of MA2 or its inactive strains (IMA2) could decrease serum uremic toxins of adenine-induced CKD mice, and also elevate the relative expression of claudin-1. Meanwhile, intervention of MA2 or IMA2 decreased the contents of lipopolysaccharide, Toll-like receptor 4 (TLR4) and interleukin-1β (IL-1β) in the kidney. 16S rDNA sequencing results indicated that the intervention of MA2 or IMA2 regulated the gut microbiota structure by elevating the abundance of Lactobacillus, and decreasing the abundance of Proteobacteria. Thus, oral administration of MA2 or IMA2 can reduce the uremic toxins in CKD mice by regulating gut microflora and restoring the intestinal mucosal barrier. Our study provided a theoretical basis for the application of MA2 and its postbiotics in the CKD intervention and treatment.
A.Z. Rosenberg, J.B. Kopp, Focal segmental glomerulosclerosis, Clin. J. Am. Soc. Nephrol. 12(3) (2017) 502-517. https://doi.org/10.2215/CJN.05960616.
S. Lekawanvijit, Role of gut-derived protein-bound uremic toxins in cardiorenal syndrome and potential treatment modalities, Circ. J. 79(10) (2015) 2088-2097. https://doi.org/10.1253/circj.CJ-15-0749.
E. Hysi, X. He, M.N. Fadhel, et al., Photoacoustic imaging of kidney fibrosis for assessing pretransplant organ quality, JCI Insight 5(10) (2020) e136995. https://doi.org/10.1172/jci.insight.136995.
Q. Wang, M. Sun, C. Ma, et al., Emphysematous pyelonephritis and cystitis in a patient with uremia and anuria: a case report and literature review, Medicine 97(45) (2018) e11272. https://doi.org/10.1097/MD.0000000000011272.
S. Sifuentes-Franco, D.E. Padilla-Tejeda, S. Carrillo-Ibarra, et al., Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy, Int. J. Endocrinol. 2018 (2018) 1875870. https://doi.org/10.1155/2018/1875870.
A.A.I. Fooladi, M.H. Yazdi, M.R. Pourmand, et al., Th1 cytokine production induced by Lactobacillus acidophilus in BALB/c mice bearing transplanted breast tumor, Jundishapur J. Microb. 8(4) (2015) e17354. https://doi.org/10.5812/jjm.8(4)2015.17354.
W.H.W. Tang, Z.N. Wang, D.J. Kennedy, et al., Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease, Circ. Res. 116(3) (2015) 448-455. https://doi.org/10.1161/Circresaha.116.305360.
B.F. Palmer, D.J. Clegg, Diagnosis and treatment of hyperkalemia, Clev. Clin. J. Med. 84(12) (2017) 934-942. https://doi.org/10.3949/ccjm.84a.17056.
J.M. Pickard, M.Y. Zeng, R. Caruso, et al., Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease, Immunol. Rev. 279(1) (2017) 70-89. https://doi.org/10.1111/imr.12567.
S.C. Ng, A.L. Hart, M.A. Kamm, et al., Mechanisms of action of probiotics: recent advances, Inflamm. Bowel. Dis. 15(2) (2009) 300-310. https://doi.org/10.1002/ibd.20602.
N. Gagliani, S. Huber, Basic aspects of T helper cell differentiation, Methods Mol. Biol. 1514 (2017) 19-30. https://doi.org/10.1007/978-1-4939-6548-9_2.
N. Wang, P. Li, J. Pan, et al., Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice, Sci. Rep. 8(1) (2018) 13646. https://doi.org/10.1038/s41598-018-32006-z.
C. Chelakkot, J. Ghim, S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med. 50(8) (2018) 1-9. https://doi.org/10.1038/s12276-018-0126-x.
Y. Wang, D. Wang, H. Lü, et al., Modulation of the gut microbiota and glycometabolism by a probiotic to alleviate amyloid accumulation and cognitive impairments in AD rats, Mol. Nutr. Food Res. 66(19) (2022) e2200265. https://doi.org/10.1002/mnfr.202200265.
W. Tang, Z.Q. Xing, W. Hu, et al., Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract, Appl. Microbiol. Biotechnol. 100(16) (2016) 7193-7202. https://doi.org/10.1007/s00253-016-7581-x.
M. Kawase, F. He, A. Kubota, et al., Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection, Lett. Appl. Microbiol. 51(1) (2010) 6-10. https://doi.org/10.1111/j.1472-765X.2010.02849.x.
W. Geng, Y. Zhang, J. Yang, et al., Identification of a novel probiotic and its protective effects on NAFLD via modulating gut microbial community, J. Sci. Food Agric. 102(11) (2022) 4620-4628. https://doi.org/10.1002/jsfa.11820.
J. Rangaswami, P.A. McCullough, Heart failure in end-stage kidney disease: pathophysiology, diagnosis, and therapeutic strategies, Semin. Nephrol. 38(6) (2018) 600-617. https://doi.org/10.1016/j.semnephrol.2018.08.005.
W.Y. Zheng, X. Liang, L.Y. Shui, et al., Serum procalcitonin correlates with renal function in hepatitis B virus-related acute-on-chronic liver failure, Cell Physiol. Biochem. 50(5) (2018) 1794-1803. https://doi.org/10.1159/000494820.
C. Barrios, M. Beaumont, T. Pallister, et al., Gut-microbiota-metabolite axis in early renal function decline, PLoS ONE 10(8) (2015) e0134311. https://doi.org/10.1371/journal.pone.0134311.
C.N. Sharp, L.J. Siskind, Developing better mouse models to study cisplatin-induced kidney injury, Am. J. Physiol. Renal Physiol. 313(4) (2017) 835-841. https://doi.org/10.1152/ajprenal.00285.2017.
Y.J. Lee, K.Y. Li, P.J. Wang, et al, Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model, J. Food Drug Anal. 28(1) (2020) 103-114. https://doi.org/10.1016/j.jfda.2019.10.001.
U. Asmat, K. Abad, K. Ismail, Diabetes mellitus and oxidative stress-a concise review, Saudi Pharm. J. 24(5) (2016) 547-553. https://doi.org/10.1016/j.jsps.2015.03.013.
H. Huang, K. Li, Y. Lee, et al., Preventive effects of Lactobacillus mixture against chronic kidney disease progression through enhancement of beneficial bacteria and downregulation of gut-derived uremic toxins, J. Agric. Food Chem. 69(26) (2021) 7353-7366. https://doi.org/10.1021/acs.jafc.1c01547.
T.K. Wu, P.S. Lim, J.S. Jin, et al., Impaired gut epithelial tight junction expression in hemodialysis patients complicated with intradialytic hypotension, Biomed Res. Int. 2018 (2018) 2670312. https://doi.org/10.1155/2018/2670312.
A.J. McDermott, G.B. Huffnagle, The microbiome and regulation of mucosal immunity, Immunology 142(1) (2014) 24-31. https://doi.org/10.1111/imm.12231.
F. Tang, K. Fan, K. Wang, et al, Atractylodin attenuates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome and TLR4 pathways, J. Pharmacol. Sci. 136(4) (2018) 203-211. https://doi.org/10.1016/j.jphs.2017.11.010.
C. Hou, X. Zeng, F. Yang, et al., Study and use of the probiotic Lactobacillus reuteri in pigs: a review, J. Anim. Sci. Biotechnol. 6(1) (2015) 14. https://doi.org/10.1186/s40104-015-0014-3.
L.M. Rocha-Ramirez, R.A. Perez-Solano, S.L. Castanon-Alonso, et al., Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages, J. Immunol. Res. 2017 (2017) 4607491. https://doi.org/10.1155/2017/4607491.
J.H. Lee, Y.G. Kim, K.H. Baek, et al., The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens, Environ. Microbiol. 17(4) (2015) 1234-1244. https://doi.org/10.1111/1462-2920.12560.
T.H. Liu, J. Wang, C.Y. Zhang, et al., Gut microbial characteristical comparison reveals potential anti-aging function of Dubosiella newyorkensis in mice, Front. Endocrinol. 14 (2023) 1133167. https://doi.org/10.3389/fendo.2023.1133167.
H. Zhu, C. Cao, Z. Wu, et al., The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease, Cell Metab. 33(10) (2021) 2091-2093. https://doi.org/10.1016/j.cmet.2021.08.015.