PDF (5.7 MB)
Collect
Submit Manuscript
Open Access

2’-Fucosyllactose modulates the function of intestinal microbiota to reduce intestinal permeability in mice colonized by feces from healthy infants

Qingxue Chena,bLiu Yanga,bFangqin Xianga,bIgnatius Man-Yau Szetoc,dYalu YandBiao LiudJinju ChengaLu Liua,bBailiang Lia,b ()Sufang Duanc,d()
Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
College of Food Science, Northeast Agricultural University, Harbin 150030, China
National Center of Technology Innovation for Dairy, Hohhot 010110, China
Inner Mongolia Yili Industrial Group, Co., Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• 2′-Fucosyllactose (2′-FL) is a naturally occurring prebiotic in human milk.

• The human microbiota-associated (HMA) mouse model is a cutting-edge and effective means of studying the composition of infant foods.

• 2′-FL modulates the intestinal microbial composition and metabolic function.

• The improvement of intestinal microenvironment promotes intestinal permeability.

Graphical Abstract

View original image Download original image

Abstract

2’-Fucosyllactose (2’-FL) shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding. However, the effect and mechanism of 2’-FL in improving intestinal permeability are not clear. In this study, we constructed human microbiota-associated (HMA) mouse models by colonizing healthy infant feces in mice with antibiotic-depleted intestinal microbiota. The protective effect of 2’-FL on the intestinal permeability was explored using the HMA mouse models, and the combination of metagenomics was used to analyze the possible mechanisms by which the microorganisms reduced the intestinal permeability. The results showed that 2’-FL decreased the concentration of markers of intestinal permeability (enterotoxin and diamine oxidase (DAO)) and increased the expression levels of tight junctions (occludin and claudin). Metagenomics revealed the enrichment of Bifidobacterium and increased the expression of glycoside hydrolases (GHs), including GH31, GH28, and GH5. In conclusion, 2’-FL strengthened intestinal permeability function by improving microbiota composition to control the translocation of harmful substance.

References

[1]

J. König, J. Wells, P.D. Cani, et al., Human intestinal barrier function in health and disease, Clin. Transl. Gastroenterol. 7(10) (2016) e196. https://doi.org/10.1038/ctg.2016.54.

[2]

Y. Yang, M. Nguyen, V. Khetrapal, et al., Within-host evolution of a gut pathobiont facilitates liver translocation, Nature 607 (2022) 563-570. https://doi.org/10.1038/s41586-022-04949-x.

[3]

Z. Zhai, J.P. Boquete, B. Lemaitre, Cell-specific IMD-NF-κB responses enable simultaneous antibacterial immunity and intestinal epithelial cell shedding upon bacterial infection, Immunity 48(5) (2018) 897-910. https://doi.org/10.1016/j.immuni.2018.04.010.

[4]

J. Martel, S.H. Chang, Y.F. Ko, et al., Gut barrier disruption and chronic disease, Trends Endocrinol. Metab. 33(4) (2022) 247-265. https://doi.org/10.1016/j.tem.2022.01.002.

[5]

A. Nicoletti, F.R. Ponziani, M. Biolato, et al., Intestinal permeability in the pathogenesis of liver damage: from non-alcoholic fatty liver disease to liver transplantation, World J. Gastroenterol. 25(33) (2019) 4814-4834. https://doi.org/10.3748/wjg.v25.i33.4814.

[6]

S.P. Mishra, B. Wang, S. Jain, et al., A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut, Gut 72(10) (2023) 327365. https://doi.org/10.1136/gutjnl-2022-327365.

[7]

A. Sheikh, B. Tumala, T.J. Vickers, et al., Enterotoxigenic Escherichia coli heat-labile toxin drives enteropathic changes in small intestinal epithelia, Nat. Commun. 13(1) (2022) 6886. https://doi.org/10.1038/s41467-022-34687-7.

[8]

M.F. Mccarty, A. Lerner. Perspective: prospects for nutraceutical support of intestinal barrier function, Adv. Nutr. 12(2) (2021) 316-324. https://doi.org/10.1093/advances/nmaa139.

[9]

W. Miao, X. Wu, K. Wang, et al., Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2, Int. J. Mol. Sci. 17(10) (2016) nmaa139. https://doi.org/10.1093/advances/nmaa139.

[10]

P. Paone, P.D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners?, Gut 69(12) (2020) 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260.

[11]

K. Arnauts, P. Sudhakar, S. Verstockt, et al., Microbiota, not host origin drives ex vivo intestinal epithelial responses, Gut Microbes 14(1) (2022) 2089003. https://doi.org/10.1080/19490976.2022.2089003.

[12]

K. Salli, H. Anglenius, J. Hirvonen, et al., The effect of 2’-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose, Sci. Rep. 9(1) (2019) 13232. https://doi.org/10.1038/s41598-019-49497-z.

[13]

I. Grosheva, D. Zheng, M. Levy, et al., High-throughput screen identifies host and microbiota regulators of intestinal barrier function, Gastroenterology 159(5) (2020) 1807-1823. https://doi.org/10.1053/j.gastro.2020.07.003.

[14]

S. Ahmadi, S. Wang, R. Nagpal, et al., A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis, JCI Insight 5(9) (2020) 132055. https://doi.org/10.1172/jci.insight.132055.

[15]

Q. Chen, S. Wang, J. Guo, et al., The protective effects of Lactobacillus plantarum KLDS 1.0344 on LPS-induced mastitis in vitro and in vivo, Front. Immunol. 12 (2021) 770822. https://doi.org/10.3389/fimmu.2021.770822.

[16]

Q. Chen, Q. Yin, Q. Xie, et al., Elucidating gut microbiota and metabolite patterns shaped by goat milk-based infant formula feeding in mice colonized by healthy infant feces, Food Chem. 410 (2023) 135413. https://doi.org/10.1016/j.foodchem.2023.135413.

[17]

P.D. Cani, Interactions between gut microbes and host cells control gut barrier and metabolism, Int. J. Obes. 6(Suppl 1) (2016) S28-S31. https://doi.org/10.1038/ijosup.2016.6.

[18]

C. Kong, M.M. Faas, P. de Vos, et al., Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier, Food Funct. 11(11) (2020) 9445-9467. https://doi.org/10.1039/d0fo01700k.

[19]

R. Akkerman, M.M. Faas, P. de Vos, Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: effects on microbiota and gut maturation, Crit. Rev. Food Sci. Nutr. 59(9) (2019) 1486-1497. https://doi.org/10.1080/10408398.2017.1414030.

[20]

A.E. Moor, Y. Harnik, S. Ben-Moshe, et al., Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis, Cell 175(4) (2018) 1156-1167. https://doi.org/10.1016/j.cell.2018.08.063.

[21]

Y. Kim, S.W. Hwang, S. Kim, et al., Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota, Gut Microbes 11(4) (2020) 944-961. https://doi.org/10.1080/19490976.2020.1730149.

[22]

A.L. Li, W.W. Ni, Y. Li, et al., Effect of 2’-fucosyllactose supplementation on intestinal flora in mice with intestinal inflammatory diseases, Int. Dairy J. 110 (2020) 104797. https://doi.org/10.1016/j.idairyj.2020.104797.

[23]

T. Wang, P. Wang, L. Yin, et al., Dietary Lactiplantibacillus plantarum KX041 attenuates colitis-associated tumorigenesis and modulates gut microbiota, Food Sci. and Hum. Well. 12(5) (2023) 1626-1636. https://doi.org/10.1016/j.fshw.2023.02.012.

[24]

L. Xue, J. He, N. Gao, et al., Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia, Sci. Rep. 7 (2017) 45176. https://doi.org/10.1038/srep45176.

[25]

H. Li, J.A. Lane, J. Chen, et al., In vitro fermentation of human milk oligosaccharides by individual Bifidobacterium longum-dominant infant fecal inocula, Carbohydr. Polym. 287 (2022) 119322. https://doi.org/10.1016/j.carbpol.2022.119322.

[26]

B. Tian, J. Zhao, M. Zhang, et al., Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota, Mol. Nutr. Food. Res. 65(8) (2021) e2000745. https://doi.org/10.1002/mnfr.202000745.

[27]

C. Chelakkot, J. Ghim, S.H. Ryu. Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med. 50(8) (2018) 1-9. https://doi.org/10.1038/s12276-018-0126-x.

[28]

C.T. Capaldo, D.N. Powell, D. Kalman. Layered defense: how mucus and tight junctions seal the intestinal barrier, J. Mol. Med. (Berl) 95(9) (2017) 927-934. https://doi.org/10.1007/s00109-017-1557-x.

[29]

K. Mineta, Y. Yamamoto, Y. Yamazaki, et al., Predicted expansion of the claudin multigene family, FEBS. Lett. 585(4) (2011) 606-612. https://doi.org/10.1016/j.febslet.2011.01.028.

[30]

V. Grubišić, V. Bali, D.E. Fried, et al., Enteric glial adenosine 2B receptor signaling mediates persistent epithelial barrier dysfunction following acute DSS colitis, Mucosal Immunol. 15(5) (2022) 964-976. https://doi.org/10.1038/s41385-022-00550-7.

[31]

C.H.T. Hall, J.S. Lee, E.M. Murphy, et al., Creatine transporter, reduced in colon tissues from patients with inflammatory bowel diseases, regulates energy balance in intestinal epithelial cells, Epithelial Integrity, and Barrier Function, Gastroenterology 159(3) (2020) 984-998. https://doi.org/10.1053/j.gastro.2020.05.033.

[32]

N. Rahimi, Defenders and challengers of endothelial barrier function, Front. Immunol. 8 (2017) 1847. https://doi.org/10.3389/fimmu.2017.01847.

[33]

W.T. Kuo, L. Zuo, M.A. Odenwald, et al., The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair, Gastroenterology 161(6) (2021) 1924-1939. https://doi.org/10.1053/j.gastro.2021.08.047.

[34]

S.A.L. Ghadban, S. Kaissi, F.R. Homaidan, et al., Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease, Sci. Rep. 6 (2016) 29783. https://doi.org/10.1038/srep29783.

[35]

M.F. Laursen, Gut microbiota development: influence of diet from infancy to toddlerhood, Ann. Nutr. Metab. 2021 (2021) 1-14. https://doi.org/10.1159/000517912.

[36]

B.E Heiss, A.M. Ehrlich, M.X. Maldonado-Gomez, et al., Bifidobacterium catabolism of human milk oligosaccharides overrides endogenous competitive exclusion driving colonization and protection, Gut Microbes 13 (2021) 1986666. https://doi.org/10.1080/19490976.2021.1986666.

[37]

J. Shang, S. Yang, X. Meng, Correlations between oligosaccharides in breast milk and the composition of the gut microbiome in breastfed infants, J. Dairy Sci. 105 (2022) 4818-4828. https://doi.org/10.3168/jds.2021-20928.

[38]

M. Bazanella, T.V. Maier, T. Clavel, et al., Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome, Am. J. Clin. Nutr. 106 (2017) 1274-1286. https://doi.org/10.3945/ajcn.117.157529.

[39]

F. Turroni, C. Milani, S. Duranti, et al., Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach, Isme. J. 10(7) (2016) 1656-1668. https://doi.org/10.1038/ismej.2015.236.

[40]

D.K. Lee, S. Ahn, H.Y. Cho, et al., Metabolic response induced by parasitic plant-fungus interactions hinder amino sugar and nucleotide sugar metabolism in the host, Sci. Rep. 6 (2016) 37434. https://doi.org/10.1038/srep37434.

[41]

R.L. Cordeiro, C.R. Santos, M.N. Domingues, et al., Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum, Nat. Chem. Biol. 19 (2023) 218-229. https://doi.org/10.1038/s41589-022-01202-4.

[42]

J. Yan, Y. Pan, W. Shao, et al., Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling, Microbiome 10(1) (2022) 195. https://doi.org/10.1186/s40168-022-01390-0.

[43]

A.L.A. Neves, J. Yu, Y. Suzuki, et al., Accelerated discovery of novel glycoside hydrolases using targeted functional profiling and selective pressure on the rumen microbiome, Microbiome 9(1) (2021) 229. https://doi.org/10.1186/s40168-021-01147-1.

[44]

J. Luo, W. Huang, W. Guo, et al., Novel strategy to stimulate the food wastes anaerobic fermentation performance by eggshell wastes conditioning and the underlying mechanisms, Chem. Eng. J. 398 (2020) 125560. https://doi.org/10.1016/j.cej.2020.125560.

[45]

E.A. Macgregor, S. Janecek, B. Svensson, Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes, Biochim. Biophys. Acta. 1546(1) (2001) 1-20. https://doi.org/10.1016/s0167-4838(00)00302-2.

[46]

T. Takaha, M. Yanase, S. Okada, et al., Disproportionating enzyme (4-alpha-glucanotransferase; EC 2.4.1.25) of potato. purification, molecular cloning, and potential role in starch metabolism, J. Biol. Chem. 268(2) (1993) 1391-1396. https://doi.org/10.1016/s0021-9258(18)54088-6.

[47]

D. Yao, M. Wu, Y. Dong, et al., In vitro fermentation of fructooligosaccharide and galactooligosaccharide and their effects on gut microbiota and SCFAs in infants, J. Funct. Foods 99 (2022) 105329. https://doi.org/10.1016/j.jff.2022.105329.

Food Science and Human Wellness
Article number: 9250021
Cite this article:
Chen Q, Yang L, Xiang F, et al. 2’-Fucosyllactose modulates the function of intestinal microbiota to reduce intestinal permeability in mice colonized by feces from healthy infants. Food Science and Human Wellness, 2025, 14(1): 9250021. https://doi.org/10.26599/FSHW.2024.9250021
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return