AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (32.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Bifidobacterium breve CCFM1078 regulates bone development in growing BALB/c mice via gut microbiota and metabolites to balance bone formation and resorption

Bowen Lia,bMengfan Dinga,bXiaoming Liua,bHaiqin Chena,bJianxin Zhaoa,b,cRoss R. Paulc,dCatherine Stantonc,d,eShilong Jiangf,gWei Chena,b,hBo Yanga,b,c( )
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
Teagasc Food Research Centre, Cork P61 C996, Ireland
Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing 100083, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Graphical Abstract

Abstract

This study endeavors to investigate the effects of Bifidobacterium breve CCFM1078 on bone formation and resorption balance in growing BALB/c mice. Newborn BALB/c mice were assigned to the control group (administration saline) and the CCFM1078 group (administration B. breve CCFM1078, 3 × 109 CFU/day) in 3-, 4-, and 5-week tests. All the groups have male and female distinctions. Our findings demonstrate that B. breve CCFM1078 exerts on the dynamic equilibrium between bone formation and resorption during the critical period of growth in mice by modulating the composition of gut microbiota and metabolites (hexadecanamide, linoleoyl ethanolamide, and palmitoyl ethanolamide), the genes and proteins expression related to the growth hormone (GH)/insulin-like growth factors-1 (IGF-1) axis and Gs/PKA/CREB signaling pathways, as well as downstream osteogenic and osteoclastic differentiation factors. The effects of B. breve CCFM1078 were different with age and gender dependent. This finding suggests B. breve CCFM1078 may have potential applications in regulating bone metabolism in the growth period population.

Electronic Supplementary Material

Download File(s)
fshw-14-1-9250023_ESM.docx (764.6 KB)

References

[1]

C. Ayers, D. Kansagara, B. Lazur, et al., Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the american college of physicians, Ann. Intern. Med. 176 (2023) 182-195. https://doi.org/10.7326/M22-0684.

[2]

S.A. Norris, E.A. Frongillo, M.M. Black, et al., Nutrition in adolescent growth and development, Lancet 399 (2022) 172-184. https://doi.org/10.1016/S0140-6736(21)01590-7.

[3]
P.D. United Nations Department of Economic and Social Affairs, World Population Prospects 2022: Summary of Results, 2022. https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022.
[4]

J.Y. Lee, R.M. Tsolis, A.J. Bäumler, The microbiome and gut homeostasis, Science 377 (2022) eabp9960. https://doi.org/10.1126/science.abp9960.

[5]

M.M. Zaiss, R.M. Jones, G. Schett, et al., The gut-bone axis: how bacterial metabolites bridge the distance, J. Clin. Invest. 129 (2019) 3018-3028. https://doi.org/10.1172/JCI128521.

[6]
F. Fontana, G. Longhi, C. Tarracchini, et al., The human gut microbiome of athletes: metagenomic and metabolic insights, Microb. 11 (2023) 1-12. https://doi.org/27.10.1186/s40168-023-01470-9.
[7]

R.L. Thomas, L. Jiang, J.S. Adams, et al., Vitamin D metabolites and the gut microbiome in older men, Nat. Commun. 11 (2020) 5997. https://doi.org/10.1038/s41467-020-19793-8.

[8]

S.H. Saunders, D.K. Newman, Extracellular electron transfer transcends microbe-mineral interactions, Cell Host Microbe 24 (2018) 611-613. https://doi.org/10.1016/j.chom.2018.10.018.

[9]

R.W. Warne, J. Dallas, Microbiome mediation of animal life histories via metabolites and insulin-like signalling, Biolog. Rev. 97 (2022) 1118-1130. https://doi.org/10.1111/brv.12833.

[10]

E. Kermgard, N.K. Chawla, K. Wesseling-Perry, Gut microbiome, parathyroid hormone, and bone, Cur. Opin. Nephrol. Hypertens. 30 (2021) 418-423. https://doi.org/10.1097/MNH.0000000000000714.

[11]

B. Li, B. Yang, X. Liu, et al., Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights, Cell. Mol. Life Sci. 79 (2022) 470. https://doi.org/10.1007/s00018-022-04498-6.

[12]

I. Ibrahim, S. Syamala, J.A. Ayariga, et al., Modulatory effect of gut microbiota on the gut-brain, gut-bone axes, and the impact of cannabinoids, Metabol. 12 (2022) 1247. https://doi.org/10.3390/metabo12121247.

[13]

M. Cunningham, M.A. Azcarate-Peril, A. Barnard, et al., Shaping the future of probiotics and prebiotics, Trends Microbiol. 29 (2021) 667-685. https://doi.org/10.1016/j.tim.2021.01.003.

[14]

J. Behera, J. Ison, M.J. Voor, et al., Probiotics stimulate bone formation in obese mice via histone methylations, Theranostics 11 (2021) 8605-8623. https://doi.org/10.7150/thno.63749.

[15]

P. Li, B. Ji, H. Luo, et al., One-year supplementation with Lactobacillus reuteri ATCC PTA 6475 counteracts a degradation of gut microbiota in older women with low bone mineral density, NPJ Biofilms Microbiomes 8 (2022) 84. https://doi.org/10.1038/s41522-022-00348-2.

[16]

C.C. Lee, Y.C. Liao, M.C. Lee, et al., Lactobacillus plantarum TWK10 attenuates aging-associated muscle weakness, bone loss, and cognitive impairment by modulating the gut microbiome in mice, Front. Nutr. 8 (2021) 708096. https://doi.org/10.3389/fnut.2021.708096.

[17]

F. Liu, A. Kong, P. Fu, et al., Lactobacillus rhamnosus JYLR-005 prevents thiram-induced tibial dyschondroplasia by enhancing bone-related growth performance in chickens, Probiotics Antimicrob. Proteins 13 (2021) 19-31. https://doi.org/10.1007/s12602-020-09670-7.

[18]

L. Sapra, N. Shokeen, K. Porwal, et al., Bifidobacterium longum ameliorates ovariectomy-induced bone loss via enhancing anti-osteoclastogenic and immunomodulatory potential of regulatory B cells (Bregs), Front. Immunol. 13 (2022) 875788. https://doi.org/10.3389/fimmu.2022.875788.

[19]

H. Lan, W.H. Liu, H. Zheng, et al., Bifidobacterium lactis BL-99 protects mice with osteoporosis caused by colitis via gut inflammation and gut microbiota regulation, Food Funct. 13 (2022) 1482-1494. https://doi.org/10.1039/D1FO02218K.

[20]

F. Zhao, Z. Guo, L.Y. Kwok, et al., Bifidobacterium lactis Probio-M8 improves bone metabolism in patients with postmenopausal osteoporosis, possibly by modulating the gut microbiota, European J. Nutr. 62 (2023) 965-976. https://doi.org/10.1007/s00394-022-03042-3.

[21]

B. Li, M. Ding, X. Liu, et al., Bifidobacterium breve CCFM1078 alleviates collagen-induced arthritis in rats via modulating the gut microbiota and repairing the intestinal barrier damage, J. Agric. Food Chem. 70 (2022) 14665-14678. https://doi.org/10.1021/acs.jafc.2c04602.

[22]
Q.K. Kang, J.C. LaBreck, H.E. Gruber, et al., Histological techniques for decalcified bone and cartilage, in: Y.H. An, K.L. Martin (Eds.), Handbook of Histology Methods for Bone and Cartilage, Humana Press, Totowa, NJ, 2003, pp. 209-219. https://doi.org/10.1007/978-1-59259-417-7_13.
[23]

M. Ding, Y. Zheng, F. Liu, et al., Bifidobacterium lactation time influences the composition of and at species level in human breast milk, Beneficial Microb. 13 (2022) 319-300. https://doi.org/10.3920/BM2021.0119.

[24]

M. Ding, H. Chen, R. Yu, et al., Shared and non-shared sIgA-coated and -uncoated bacteria in intestine of mother-infant pairs, Internat. J. Molecul. Sci. 23 (2022) 9873. https://doi.org/10.3390/ijms23179873.

[25]

M. Ding, B. Yang, W.W. Khine, et al., The species-level composition of the fecal Bifidobacterium and Lactobacillus genera in indonesian children differs from that of their mothers, Microorgan. 9 (2021) 1995. https://doi.org/10.3390/microorganisms9091995.

[26]

Y. Ge, B. Li, Y. Yang, et al., Oxidized pork induces disorders of glucose metabolism in mice, Molecul. Nutr. Food Res. 65 (2021) 2000859. https://doi.org/10.1002/mnfr.202000859.

[27]

B. Li, Y. Ge, Y. Xu, et al., Spatial learning and memory impairment in growing mice induced by major oxidized tyrosine product dityrosine, J. Agric. Food Chem. 67 (2019) 9039-9049. https://doi.org/10.1021/acs.jafc.9b04253.

[28]

Y. Ge, Y. Yang, Y. Jiang, et al., Oxidized pork induces hepatic steatosis by impairing thyroid hormone function in mice, Molecul. Nutr. Food Res. 66 (2022) 2100602. https://doi.org/10.1002/mnfr.202100602.

[29]

X. Li, K. Shan, C. Li, et al., Intermittent protein diets alter hepatic lipid accumulation by changing tryptophan metabolism in a fast-response manner, J. Agric. Food Chem. 71 (2023) 3261-3272. https://doi.org/10.1021/acs.jafc.2c06576.

[30]

S.C. Forster, S. Clare, B.S. Beresford-Jones, et al., Identification of gut microbial species linked with disease variability in a widely used mouse model of colitis, Nat. Microb. 7 (2022) 590-599. https://doi.org/10.1038/s41564-022-01094-z.

[31]

C. Li, Q. Huang, R. Yang, et al., Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China, Osteopor. Internat. 30 (2019) 1003-1013. https://doi.org/10.1007/s00198-019-04855-5.

[32]

W. Luo, Z. Shen, M. Deng, et al., Roseburia intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response, Mol. Med. Rep. 20 (2019) 1007-1016. https://doi.org/10.3892/mmr.2019.10327.

[33]

Y.Y. Lin, S.L. Chang, S.C. Liu, et al., Therapeutic effects of live Lactobacillus plantarum GKD7 in a rat model of knee osteoarthritis, Nutrients 14 (2022) 3170. https://doi.org/10.3390/nu14153170.

[34]

W.J. Cheng, H.T. Yang, C.C. Chiang, et al., Deer velvet antler extracts exert anti-inflammatory and anti-arthritic effects on human rheumatoid arthritis fibroblast-like synoviocytes and distinct mouse arthritis, Am. J. Chinese Med. 50 (2022) 1617-1643. https://doi.org/10.1142/S0192415X22500689.

[35]

R. Pezzilli, P. Ciuffreda, R. Ottria, et al., Serum endocannabinoids in assessing pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma, Scandinavian J. Gastroenterol. 52 (2017) 1133-1139. https://doi.org/10.1080/00365521.2017.1342139.

[36]

G. Pinna, Biomarkers and treatments for mood disorders encompassing the neurosteroid and endocannabinoid systems, J. Neuroendocrinol. 2022 (2022) e13226. https://doi.org/10.1111/jne.13226.

[37]

P. Cifelli, G. Ruffolo, M. Ceccanti, et al., Classical and unexpected effects of ultra-micronized PEA in neuromuscular function, Biomolecules 12 (2022) 578. https://doi.org/10.3390/biom12060758.

[38]

A. Roy, M. Kundu, M. Jana, et al., Identification and characterization of PPARα ligands in the hippocampus, Nat. Chem. Biol. 12 (2016) 1075-1083. https://doi.org/10.1038/nchembio.2204.

[39]

M. Grabacka, P.M. Płonka, M. Pierzchalska, The PPARα regulation of the gut physiology in regard to interaction with microbiota, intestinal immunity, metabolism, and permeability, Internat. J. Molecul. Sci. 23 (2022) 14156. https://doi.org/10.3390/ijms232214156.

[40]

I. Manoharan, A. Suryawanshi, Y. Hong, et al., Homeostatic PPARα signaling limits inflammatory responses to commensal microbiota in the intestine, J. Immunol. 196 (2016) 4739-4749. https://doi.org/10.4049/jimmunol.1501489.

[41]

N.H. Salzman, K. Hung, D. Haribhai, et al., Enteric defensins are essential regulators of intestinal microbial ecology, Nat. Immunol. 11 (2010) 76-82. https://doi.org/10.1038/ni.1825.

[42]

K.R. Crakes, J. Pires, N. Quach, et al., Fenofibrate promotes PPARα-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus, Sci. Rep. 11 (2021) 13454. https://doi.org/10.1038/s41598-021-92966-7

[43]

C. Torres-Fuentes, A.V. Golubeva, A.V. Zhdanov, et al., Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling, FASEB J. 33 (2019) 13546-13559. https://doi.org/10.1096/fj.201901433R.

[44]

S. Rahat-Rozenbloom, J. Fernandes, J. Cheng, et al., Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans, European J. Clin. Nutr. 71 (2017) 953-958. https://doi.org/10.1038/ejcn.2016.249.

[45]

G. Gorgisen, I.M. Gulacar, O.N. Ozes, The role of insulin receptor substrate (IRS) proteins in oncogenic transformation, Cell. Mol. Bio. 63 (2017) 1-5. https://doi.org/10.14715/cmb/2017.63.1.1.

[46]

X.K. Gao, X.S. Rao, X.X. Cong, et al., Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes, Cell Dis. 8 (2022) 60. https://doi.org/10.1038/s41421-022-00426-x.

[47]

Y. Wang, D.D. Bikle, W. Chang, Autocrine and paracrine actions of IGF-I signaling in skeletal development, Bone Res. 1 (2013) 249-259. https://doi.org/10.4248/BR201303003

[48]

P.K. Russell, M.V. Clarke, J.P. Skinner, et al., Identification of gene pathways altered by deletion of the androgen receptor specifically in mineralizing osteoblasts and osteocytes in mice, J. Mol. Endocrinol. 49 (2012) 1-10. https://doi.org/10.1530/JME-12-0014.

[49]

L.E. Olson, C. Ohlsson, S. Mohan, The role of GH/IGF-I-mediated mechanisms in sex differences in cortical bone size in mice, Calcif. Tissue Internat. 88 (2011) 1-8. https://doi.org/10.1007/s00223-010-9436-2.

[50]

M.A. Smit, C.M.J. van Kinschot, J. van der Linden, et al., Clinical guidelines and PTH measurement: does assay generation matter?, Endocr. Rev. 40 (2019) 1468-1480. https://doi.org/10.1210/er.2018-00220.

[51]

A.T. Pearman, W.Y. Chou, K.D. Bergman, et al., Parathyroid hormone induces c-fos promoter activity in osteoblastic cells through phosphorylated cAMP response element (CRE)-binding protein binding to the major CRE, J. Biolog. Chem. 271 (1996) 25715-25721. https://doi.org/10.1074/jbc.271.41.25715.

[52]

A. de Sire, R. de Sire, C. Curci, et al., Role of dietary supplements and probiotics in modulating microbiota and bone health: the gut-bone axis, Cells 11 (2022) 743. https://doi.org/10.3390/cells11040743.

[53]

P. Fardellone, A. Séjourné, J. Paccou, et al., Bone remodelling markers in rheumatoid arthritis, Med. Inflamm. 2014 (2014) 484280. https://doi.org/10.1155/2014/484280.

[54]

D. Tateiwa, T. Kaito, Advances in bone regeneration with growth factors for spinal fusion: a literature review, North Am. Spine Soc. J. 13 (2023) 100193. https://doi.org/10.1016/j.xnsj.2022.100193.

[55]

T. Bordukalo-Nikšić, V. Kufner, S. Vukičević, The role of BMPs in the regulation of osteoclasts resorption and bone remodeling: from experimental models to clinical applications, Front. Immunol. 13 (2022) 869422. https://doi.org/10.3389/fimmu.2022.869422.

[56]

B. Peterburs, A. Mittelstaedt, P. Haas, et al., Biomechanical and histological analyses of the fracture healing process after direct or prolonged reduction, European J. Med. Res. 23 (2018) 39. https://doi.org/10.1186/s40001-018-0337-6.

Food Science and Human Wellness
Article number: 9250023
Cite this article:
Li B, Ding M, Liu X, et al. Bifidobacterium breve CCFM1078 regulates bone development in growing BALB/c mice via gut microbiota and metabolites to balance bone formation and resorption. Food Science and Human Wellness, 2025, 14(1): 9250023. https://doi.org/10.26599/FSHW.2024.9250023

688

Views

67

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 May 2023
Revised: 09 May 2023
Accepted: 17 May 2023
Published: 14 February 2025
© 2025 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return