PDF (24.3 MB)
Collect
Submit Manuscript
Open Access

Bifidobacterium longum subsp. infantis CCFM1269 promotes intestinal barrier and release of IFN-β through TLR4-TRIF dependent way in growing mice

Mengfan Dinga,bBo Yanga,b,c()Bowen Lia,bHaiqin Chena,bRenqiang Yud()Ross R. Paulc,eCatherine Stantonc,e,fShilong Jiangg,hJianxin Zhaoa,b,cWei Chena,b,i
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women’s Hospital of Jiangnan University, Wuxi 214122, China
APC Microbiome Ireland, University College Cork, Cork T12 R229, Ireland
Teagasc Food Research Centre, Cork P61 C996, Ireland
Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing 100083, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Bifidobacterium longum subsp. infantis is a commensal bacterium that predominates in the infant gut, playing a critical role in both preventing foreign infections and facilitating immune development. This study aimed to explore the effects of B. longum subsp. infantis supplementation on interferon-beta (IFN-β) secretion and intestinal barrier improvement in growing mice. Female and male mice were orally administered either saline or B. longum subsp. infantis CCFM1269 or I5TI (1 × 109 CFU/mice per day, n = 8) from 1-week-age until 3-, 4-, and 5-week-age. RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2’-5’ oligoadenylate synthetase (OAS). Additionally, CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway. However, this effect was not observed in 4- and 5-week-old mice. Furthermore, both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-, 4-, and 5-week-old mice. In summary, the results of this study suggested that B. longum subsp. infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.

Electronic Supplementary Material

Download File(s)
fshw-14-1-9250025_ESM.docx (77.9 KB)

References

[1]

L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151-1156. https://doi.org/10.1126/science.aao5774.

[2]

R.L. Brown, R.P. Sequeira, T.B. Clarke, The microbiota protects against respiratory infection via GM-CSF signaling, Nat. Commun. 8 (2017) 1512. https://doi.org/10.1038/s41467-017-01803-x.

[3]

G. Wang, X. Wang, Y. Ma, et al., Lactobacillus reuteri improves the development and maturation of fecal microbiota in piglets through mother-to-infant microbe and metabolite vertical transmission, Microbiome 10 (2022) 211. https://doi.org/10.1186/s40168-022-01336-6.

[4]

M.G. Dominguez-Bello, F. Godoy-Vitorino, R. Knight, et al., Role of the microbiome in human development, Gut 68 (2019) 1108. https://doi.org/10.1136/gutjnl-2018-317503.

[5]

E.D. Sonnenburg, J.L. Sonnenburg, The ancestral and industrialized gut microbiota and implications for human health, Nat. Rev. Microbiol. 17 (2019) 383-390. https://doi.org/10.1038/s41579-019-0191-8.

[6]

A.L. Steed, G.P. Christophi, G.E. Kaiko, et al., The microbial metabolite desaminotyrosine protects from influenza through type I interferon, Science 357 (2017) 498-502. https://doi.org/10.1126/science.aam5336.

[7]

S.P. Rosshart, B.G. Vassallo, D. Angeletti, et al., Wild mouse gut microbiota promotes host fitness and improves disease resistance, Cell 171 (2017) 1015-1028. https://doi.org/10.1016/j.cell.2017.09.016.

[8]

M. Lo Conte, M. Antonini Cencicchio, M. Ulaszewska, et al., A diet enriched in omega-3 PUFA and inulin prevents type 1 diabetes by restoring gut barrier integrity and immune homeostasis in NOD mice, Front. Immunol. 13 (2022) 1089987. https://doi.org/10.3389/fimmu.2022.1089987.

[9]

H. Renz, C. Skevaki, Early life microbial exposures and allergy risks: opportunities for prevention, Nat. Revi. Immunol. 21 (2021) 177-191. https://doi.org/10.1038/s41577-020-00420-y.

[10]

J. Jaime, D.S. Vargas-Bermúdez, A. Yitbarek, et al., Differential immunomodulatory effect of vitamin D (1,25(OH)2D3) on the innate immune response in different types of cells infected in vitro with infectious bursal disease virus, Poultry Science 99 (2020) 4265-4277. https://doi.org/10.1016/j.psj.2020.06.006.

[11]

I. Naqvi, N. Giroux, L. Olson, et al., DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists, Biomaterials 283 (2022) 121393. https://doi.org/10.1016/j.biomaterials.2022.121393.

[12]

J.Y. Kang, D.K. Lee, N.J. Ha, et al., Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model, J. Microbiol. 53 (2015) 796-803. https://doi.org/10.1007/s12275-015-5302-2.

[13]

G. Weiss, S. Rasmussen, L. Nielsen Fink, et al., Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells, PLoS ONE 10 (2010) e11065. https://doi.org/10.1371/journal.pone.0011065.

[14]

H. Kobayashi, P. Kanmani, T. Ishizuka, et al., Development of an in vitro immunobiotic evaluation system against rotavirus infection in bovine intestinal epitheliocytes, Benef. Microbes. 8 (2017) 309-321. https://doi.org/10.3920/BM2016.0155.

[15]

M. Ding, B. Yang, R.P. Ross, et al., Crosstalk between sIgA-coated bacteria in infant gut and early-life health, Trends Microbiol. 29 (2021) 725-735. https://doi.org/10.1016/j.tim.2021.01.012.

[16]

M.A. Underwood, J.B. German, C.B. Lebrilla, et al., Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut, Pediatr. Res. 77 (2015) 229-235. https://doi.org/10.1038/pr.2014.156.

[17]

M.J. Barratt, S. Nuzhat, K. Ahsan, et al., Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition, Sci. Transl. Med. 14 (2022) eabk1107. https://doi.org/10.1126/scitranslmed.abk1107.

[18]

B.M. Henrick, L. Rodriguez, T. Lakshmikanth, et al., Bifidobacteria-mediated immune system imprinting early in life, Cell 184 (2021) 3884-3898. https://doi.org/10.1016/j.cell.2021.05.030.

[19]

A.E. Seppo, K. Bu, M. Jumabaeva, et al., Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle, Allergy 76 (2021) 3489-3503. https://doi.org/10.1111/all.14877.

[20]

S.R. Lueschow, T.J. Boly, S.A. Frese, et al., Bifidobacterium longum subspecies strain EVC001 decreases neonatal murine necrotizing enterocolitis, Nutrients 14 (2022) 495. https://doi.org/10.3390/nu14030495.

[21]

Q. Zhang, J. Hu, J.W. Feng, et al., Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection, Genome Biol. 28 (2020) 99. https://doi.org/10.1186/s13059-020-02007-1.

[22]

S. Yildiz, B. Mazel-Sanchez, M. Kandasamy, et al., Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis, Microbiome 10 (2018) 9. https://doi.org/10.1186/s40168-017-0386-z.

[23]

B. Li, M. Ding, X. Liu, et al., Bifidobacterium breve CCFM1078 alleviates collagen-induced arthritis in rats via modulating the gut microbiota and repairing the intestinal barrier damage, J. Agric. Food Chem. 70 (2022) 14665-14678. https://doi.org/10.1021/acs.jafc.2c04602.

[24]

M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550. https://doi.org/10.1186/s13059-014-0550-8.

[25]

F. Boos, J.A. Oo, T. Warwick, et al., The endothelial-enriched lncRNA LINC00607 mediates angiogenic function, Basic Res. Cardiol. 118 (2023) 5. https://doi.org/10.1007/s00395-023-00978-3.

[26]

Y. Li, Y. Lyu, J. Huang, et al., Transcriptome sequencing reveals high-salt diet-induced abnormal liver metabolic pathways in mice, BMC Gastroenterol. 21 (2021) 335. https://doi.org/10.1186/s12876-021-01912-4.

[27]

C. Qi, M. Ding, S. Li, et al., Sex-dependent modulation of immune development in mice by secretory IgA-coated Lactobacillus reuteri isolated from breast milk, J. Dairy Sci. 104 (2021) 3863-3875. https://doi.org/10.3168/jds.2020-19437.

[28]

M. Ding, Y. Zheng, F. Liu, et al., Lactation time influences the composition of Bifidobacterium and Lactobacillus at species level in human breast milk, Benef. Microbes 13 (2022) 319-330. https://doi.org/10.3920/BM2021.0119.

[29]

M. Ding, H. Chen, R. Yu, et al., Shared and non-shared sIgA-coated and -uncoated bacteria in intestine of mother-infant pairs, Int. J. Mol. Sci. 23 (2022) 9873. https://doi.org/10.3390/ijms23179873.

[30]

N. Shaabani, V.F. Vartabedian, N. Nguyen, et al., IFN-β, but not IFN-α, is responsible for the pro-bacterial effect of type I interferon, Cell Physiol. Biochem. 55 (2021) 256-264. https://doi.org/10.33594/000000370.

[31]

K.L. Stefan, M.V. Kim, A. Iwasaki, et al., Commensal microbiota modulation of natural resistance to virus infection, Cell 183 (2020) 1312-1324. https://doi.org/10.1016/j.cell.2020.10.047.

[32]

A. Ciesielska, M. Matyjek, K. Kwiatkowska, TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling, Cell. Mol. Life Sci. 78 (2021) 1233-1261. https://doi.org/10.1007/s00018-020-03656-y.

[33]

L.C. Beck, A.C. Masi, G.R. Young, et al., Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants, Nat. Microbiol. 7 (2022) 1525-1535. https://doi.org/10.1038/s41564-022-01213-w.

[34]

A.A. van Beek, J.A. Hoogerland, C. Belzer, et al., Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response, Benef. Microbes 7 (2016) 275-287. https://doi.org/10.3920/BM2015.0094.

[35]

K. Takeda, S. Akira, TLR signaling pathways, Semin. Immunol. 10 (2004) 3-9. https://doi.org/10.1016/j.smim.2003.10.003.

[36]

A. Płóciennikowska, A. Hromada-Judycka, K. Borzęcka, et al., Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling, Cell. Mol. Life Sci. 72 (2015) 557-581. https://doi.org/10.1007/s00018-014-1762-5.

[37]

H. Shi, Y. Yu, D. Lin, et al., β-Glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice, Microbiome 8 (2020) 143. https://doi.org/10.1186/s40168-020-00920-y.

[38]

J.B. Kaper, J.G. Morris, M.M. Levine, Cholera, Clin. Microbiol. Rev. 8 (1995) 48-86. https://doi.org/10.1128/CMR.8.1.48.

[39]

K.R. Groschwitz, S.P. Hogan, Intestinal barrier function: molecular regulation and disease pathogenesis, J. Allergy Clin. Immunol. 124 (2009) 3-20. https://doi.org/10.1016/j.jaci.2009.05.038.

[40]

M. Li, J. Ding, C. Stanton, et al., Bifidobacterium longum subsp. infantis FJSYZ1M3 ameliorates DSS-induced colitis by maintaining the intestinal barrier, regulating inflammatory cytokines, and modifying gut microbiota, Food Funct. 14 (2023) 354-368. https://doi.org/10.1039/d2fo03263e.

[41]

J.Y. Kim, S.J. Bang, J.Y. Kim, et al., The probiotic strain Bifidobacterium animalis ssp. lactis HY8002 potentially improves the mucosal integrity of an altered intestinal microbial environment, Front. Microbiol. 13 (2022) 817591. https://doi.org/10.3389/fmicb.2022.817591.

[42]

K.R. Bergmann, S.X.L. Liu, R. Tian, et al., Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis, Am. J. Pathol. 182 (2013) 1595-1606. https://doi.org/10.1016/j.ajpath.2013.01.013

[43]

L. Schaupp, S. Muth, L. Rogell, et al., Microbiota-induced type I interferons instruct a poised basal state of dendritic cells, Cell 181 (2020) 1080-1096. https://doi.org/10.1016/j.cell.2020.04.022.

[44]

N. Dikopoulos, A. Bertoletti, A. Kröger, et al., Type I IFN negatively regulates CD8+ T Cell responses through IL-10-producing CD4+ T regulatory 1 Cells, J. Immunol. 174(2005) 99-109. https://doi.org/10.4049/jimmunol.174.1.99.

[45]

L. Ma, Y. Ni, Z. Wang, et al., Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice, Gut Microbes 12 (2020) 1832857. https://doi.org/10.1080/19490976.2020.1832857.

[46]

C. Zhao, L. Bao, M. Qiu, et al., Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice, Cell Rep. 41 (2022) 111681. https://doi.org/10.1016/j.celrep.2022.111681.

[47]

J. Resko Zachary, M. Anderson Caleb, J. Federle Michael, et al., A staphylococcal glucosaminidase drives inflammatory responses by processing peptidoglycan chains to physiological lengths, Infect. Immun. 91 (2023) e00500-22. https://doi.org/10.1128/iai.00500-22.

[48]

L. Guo, Q. Guan, W. Duan, et al., Dietary Goji shapes the gut microbiota to prevent the liver injury induced by acute alcohol intake, Front. Nutr. 9 (2022) 929776. https://doi.org/10.3389/fnut.2022.929776.

[49]

P. Louis, H.J. Flint, Formation of propionate and butyrate by the human colonic microbiota, Environ. Microbiol. 19 (2017) 29-41. https://doi.org/10.1111/1462-2920.13589.

Food Science and Human Wellness
Article number: 9250025
Cite this article:
Ding M, Yang B, Li B, et al. Bifidobacterium longum subsp. infantis CCFM1269 promotes intestinal barrier and release of IFN-β through TLR4-TRIF dependent way in growing mice. Food Science and Human Wellness, 2025, 14(1): 9250025. https://doi.org/10.26599/FSHW.2024.9250025
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return