Bifidobacterium longum subsp. infantis is a commensal bacterium that predominates in the infant gut, playing a critical role in both preventing foreign infections and facilitating immune development. This study aimed to explore the effects of B. longum subsp. infantis supplementation on interferon-beta (IFN-β) secretion and intestinal barrier improvement in growing mice. Female and male mice were orally administered either saline or B. longum subsp. infantis CCFM1269 or I5TI (1 × 109 CFU/mice per day, n = 8) from 1-week-age until 3-, 4-, and 5-week-age. RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2’-5’ oligoadenylate synthetase (OAS). Additionally, CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway. However, this effect was not observed in 4- and 5-week-old mice. Furthermore, both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-, 4-, and 5-week-old mice. In summary, the results of this study suggested that B. longum subsp. infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.
L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151-1156. https://doi.org/10.1126/science.aao5774.
R.L. Brown, R.P. Sequeira, T.B. Clarke, The microbiota protects against respiratory infection via GM-CSF signaling, Nat. Commun. 8 (2017) 1512. https://doi.org/10.1038/s41467-017-01803-x.
G. Wang, X. Wang, Y. Ma, et al., Lactobacillus reuteri improves the development and maturation of fecal microbiota in piglets through mother-to-infant microbe and metabolite vertical transmission, Microbiome 10 (2022) 211. https://doi.org/10.1186/s40168-022-01336-6.
M.G. Dominguez-Bello, F. Godoy-Vitorino, R. Knight, et al., Role of the microbiome in human development, Gut 68 (2019) 1108. https://doi.org/10.1136/gutjnl-2018-317503.
E.D. Sonnenburg, J.L. Sonnenburg, The ancestral and industrialized gut microbiota and implications for human health, Nat. Rev. Microbiol. 17 (2019) 383-390. https://doi.org/10.1038/s41579-019-0191-8.
A.L. Steed, G.P. Christophi, G.E. Kaiko, et al., The microbial metabolite desaminotyrosine protects from influenza through type I interferon, Science 357 (2017) 498-502. https://doi.org/10.1126/science.aam5336.
S.P. Rosshart, B.G. Vassallo, D. Angeletti, et al., Wild mouse gut microbiota promotes host fitness and improves disease resistance, Cell 171 (2017) 1015-1028. https://doi.org/10.1016/j.cell.2017.09.016.
M. Lo Conte, M. Antonini Cencicchio, M. Ulaszewska, et al., A diet enriched in omega-3 PUFA and inulin prevents type 1 diabetes by restoring gut barrier integrity and immune homeostasis in NOD mice, Front. Immunol. 13 (2022) 1089987. https://doi.org/10.3389/fimmu.2022.1089987.
H. Renz, C. Skevaki, Early life microbial exposures and allergy risks: opportunities for prevention, Nat. Revi. Immunol. 21 (2021) 177-191. https://doi.org/10.1038/s41577-020-00420-y.
J. Jaime, D.S. Vargas-Bermúdez, A. Yitbarek, et al., Differential immunomodulatory effect of vitamin D (1,25(OH)2D3) on the innate immune response in different types of cells infected in vitro with infectious bursal disease virus, Poultry Science 99 (2020) 4265-4277. https://doi.org/10.1016/j.psj.2020.06.006.
I. Naqvi, N. Giroux, L. Olson, et al., DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists, Biomaterials 283 (2022) 121393. https://doi.org/10.1016/j.biomaterials.2022.121393.
J.Y. Kang, D.K. Lee, N.J. Ha, et al., Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model, J. Microbiol. 53 (2015) 796-803. https://doi.org/10.1007/s12275-015-5302-2.
G. Weiss, S. Rasmussen, L. Nielsen Fink, et al., Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells, PLoS ONE 10 (2010) e11065. https://doi.org/10.1371/journal.pone.0011065.
H. Kobayashi, P. Kanmani, T. Ishizuka, et al., Development of an in vitro immunobiotic evaluation system against rotavirus infection in bovine intestinal epitheliocytes, Benef. Microbes. 8 (2017) 309-321. https://doi.org/10.3920/BM2016.0155.
M. Ding, B. Yang, R.P. Ross, et al., Crosstalk between sIgA-coated bacteria in infant gut and early-life health, Trends Microbiol. 29 (2021) 725-735. https://doi.org/10.1016/j.tim.2021.01.012.
M.A. Underwood, J.B. German, C.B. Lebrilla, et al., Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut, Pediatr. Res. 77 (2015) 229-235. https://doi.org/10.1038/pr.2014.156.
M.J. Barratt, S. Nuzhat, K. Ahsan, et al., Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition, Sci. Transl. Med. 14 (2022) eabk1107. https://doi.org/10.1126/scitranslmed.abk1107.
B.M. Henrick, L. Rodriguez, T. Lakshmikanth, et al., Bifidobacteria-mediated immune system imprinting early in life, Cell 184 (2021) 3884-3898. https://doi.org/10.1016/j.cell.2021.05.030.
A.E. Seppo, K. Bu, M. Jumabaeva, et al., Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle, Allergy 76 (2021) 3489-3503. https://doi.org/10.1111/all.14877.
S.R. Lueschow, T.J. Boly, S.A. Frese, et al., Bifidobacterium longum subspecies strain EVC001 decreases neonatal murine necrotizing enterocolitis, Nutrients 14 (2022) 495. https://doi.org/10.3390/nu14030495.
Q. Zhang, J. Hu, J.W. Feng, et al., Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection, Genome Biol. 28 (2020) 99. https://doi.org/10.1186/s13059-020-02007-1.
S. Yildiz, B. Mazel-Sanchez, M. Kandasamy, et al., Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis, Microbiome 10 (2018) 9. https://doi.org/10.1186/s40168-017-0386-z.
B. Li, M. Ding, X. Liu, et al., Bifidobacterium breve CCFM1078 alleviates collagen-induced arthritis in rats via modulating the gut microbiota and repairing the intestinal barrier damage, J. Agric. Food Chem. 70 (2022) 14665-14678. https://doi.org/10.1021/acs.jafc.2c04602.
M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550. https://doi.org/10.1186/s13059-014-0550-8.
F. Boos, J.A. Oo, T. Warwick, et al., The endothelial-enriched lncRNA LINC00607 mediates angiogenic function, Basic Res. Cardiol. 118 (2023) 5. https://doi.org/10.1007/s00395-023-00978-3.
Y. Li, Y. Lyu, J. Huang, et al., Transcriptome sequencing reveals high-salt diet-induced abnormal liver metabolic pathways in mice, BMC Gastroenterol. 21 (2021) 335. https://doi.org/10.1186/s12876-021-01912-4.
C. Qi, M. Ding, S. Li, et al., Sex-dependent modulation of immune development in mice by secretory IgA-coated Lactobacillus reuteri isolated from breast milk, J. Dairy Sci. 104 (2021) 3863-3875. https://doi.org/10.3168/jds.2020-19437.
M. Ding, Y. Zheng, F. Liu, et al., Lactation time influences the composition of Bifidobacterium and Lactobacillus at species level in human breast milk, Benef. Microbes 13 (2022) 319-330. https://doi.org/10.3920/BM2021.0119.
M. Ding, H. Chen, R. Yu, et al., Shared and non-shared sIgA-coated and -uncoated bacteria in intestine of mother-infant pairs, Int. J. Mol. Sci. 23 (2022) 9873. https://doi.org/10.3390/ijms23179873.
N. Shaabani, V.F. Vartabedian, N. Nguyen, et al., IFN-β, but not IFN-α, is responsible for the pro-bacterial effect of type I interferon, Cell Physiol. Biochem. 55 (2021) 256-264. https://doi.org/10.33594/000000370.
K.L. Stefan, M.V. Kim, A. Iwasaki, et al., Commensal microbiota modulation of natural resistance to virus infection, Cell 183 (2020) 1312-1324. https://doi.org/10.1016/j.cell.2020.10.047.
A. Ciesielska, M. Matyjek, K. Kwiatkowska, TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling, Cell. Mol. Life Sci. 78 (2021) 1233-1261. https://doi.org/10.1007/s00018-020-03656-y.
L.C. Beck, A.C. Masi, G.R. Young, et al., Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants, Nat. Microbiol. 7 (2022) 1525-1535. https://doi.org/10.1038/s41564-022-01213-w.
A.A. van Beek, J.A. Hoogerland, C. Belzer, et al., Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response, Benef. Microbes 7 (2016) 275-287. https://doi.org/10.3920/BM2015.0094.
K. Takeda, S. Akira, TLR signaling pathways, Semin. Immunol. 10 (2004) 3-9. https://doi.org/10.1016/j.smim.2003.10.003.
A. Płóciennikowska, A. Hromada-Judycka, K. Borzęcka, et al., Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling, Cell. Mol. Life Sci. 72 (2015) 557-581. https://doi.org/10.1007/s00018-014-1762-5.
H. Shi, Y. Yu, D. Lin, et al., β-Glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice, Microbiome 8 (2020) 143. https://doi.org/10.1186/s40168-020-00920-y.
J.B. Kaper, J.G. Morris, M.M. Levine, Cholera, Clin. Microbiol. Rev. 8 (1995) 48-86. https://doi.org/10.1128/CMR.8.1.48.
K.R. Groschwitz, S.P. Hogan, Intestinal barrier function: molecular regulation and disease pathogenesis, J. Allergy Clin. Immunol. 124 (2009) 3-20. https://doi.org/10.1016/j.jaci.2009.05.038.
M. Li, J. Ding, C. Stanton, et al., Bifidobacterium longum subsp. infantis FJSYZ1M3 ameliorates DSS-induced colitis by maintaining the intestinal barrier, regulating inflammatory cytokines, and modifying gut microbiota, Food Funct. 14 (2023) 354-368. https://doi.org/10.1039/d2fo03263e.
J.Y. Kim, S.J. Bang, J.Y. Kim, et al., The probiotic strain Bifidobacterium animalis ssp. lactis HY8002 potentially improves the mucosal integrity of an altered intestinal microbial environment, Front. Microbiol. 13 (2022) 817591. https://doi.org/10.3389/fmicb.2022.817591.
K.R. Bergmann, S.X.L. Liu, R. Tian, et al., Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis, Am. J. Pathol. 182 (2013) 1595-1606. https://doi.org/10.1016/j.ajpath.2013.01.013
L. Schaupp, S. Muth, L. Rogell, et al., Microbiota-induced type I interferons instruct a poised basal state of dendritic cells, Cell 181 (2020) 1080-1096. https://doi.org/10.1016/j.cell.2020.04.022.
N. Dikopoulos, A. Bertoletti, A. Kröger, et al., Type I IFN negatively regulates CD8+ T Cell responses through IL-10-producing CD4+ T regulatory 1 Cells, J. Immunol. 174(2005) 99-109. https://doi.org/10.4049/jimmunol.174.1.99.
L. Ma, Y. Ni, Z. Wang, et al., Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice, Gut Microbes 12 (2020) 1832857. https://doi.org/10.1080/19490976.2020.1832857.
C. Zhao, L. Bao, M. Qiu, et al., Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice, Cell Rep. 41 (2022) 111681. https://doi.org/10.1016/j.celrep.2022.111681.
J. Resko Zachary, M. Anderson Caleb, J. Federle Michael, et al., A staphylococcal glucosaminidase drives inflammatory responses by processing peptidoglycan chains to physiological lengths, Infect. Immun. 91 (2023) e00500-22. https://doi.org/10.1128/iai.00500-22.
L. Guo, Q. Guan, W. Duan, et al., Dietary Goji shapes the gut microbiota to prevent the liver injury induced by acute alcohol intake, Front. Nutr. 9 (2022) 929776. https://doi.org/10.3389/fnut.2022.929776.
P. Louis, H.J. Flint, Formation of propionate and butyrate by the human colonic microbiota, Environ. Microbiol. 19 (2017) 29-41. https://doi.org/10.1111/1462-2920.13589.