Highlights
• L. plantarum MWFLp-182 was isolated from fecal of long-living elderly individuals.
• L. plantarum MWFLp-182 showed favorable probiotic potential.
• L. plantarum MWFLp-182 could reduce the damage by ABAP-stimulated HT-29 cells.
• L. plantarum MWFLp-182 was isolated from fecal of long-living elderly individuals.
• L. plantarum MWFLp-182 showed favorable probiotic potential.
• L. plantarum MWFLp-182 could reduce the damage by ABAP-stimulated HT-29 cells.
Lactiplantibacillus plantarum MWFLp-182 was originally isolated from the feces of long-living elderly individuals in Hezhou city, Guangxi, China. L. plantarum MWFLp-182 showed favorable gastric and intestinal tolerance compared with Lactiplantibacillus rhamnosus GG (LGG). L. plantarum MWFLp-182 was further examined for its antioxidant and anti-inflammatory activity in ABAP-treated HT-29 cells. Importantly, it enhanced the expression of anti-inflammatory factor (interleukin-10 (IL-10)), antioxidant cytokines (superoxide dismutase (SOD), glutathione peroxidase (GPx), nuclear factor erythroid 2-related factor (Nrf2), and hemeoxygenase 1 (HO-1)), B-cell lymphoma-2 (Bcl-2), and tight junction (Zonula occludens protein 1 (ZO-1), Claudin-1, and Occludin) proteins and genes, and reduced reactive oxygen species (ROS). The complete genome of L. plantarum MWFLp-182 contained a single circular chromosome that was 3257196 bp long, with a G + C content of 44.49%, and a single circular plasmid that was 53560 bp long. The genes tpx, trxA, trxB, npr, nrdH, dps, recA, gpx, gshA and arsC in this strain were related to antioxidant function; the key genes involved in antioxidant function were further investigated. In this study, we identified a probiotic candidate with antioxidant properties.
E. Biagi, C. Franceschi, S. Rampelli, et al., Gut microbiota and extreme longevity, Curr. Biol. 26 (2016) 1480-1485. https://doi.org/10.1016/j.cub.2016.04.016.
V. Mishra, C. Shah, N. Mokashe, et al., Probiotics as potential antioxidants: a systematic review, J. Agric. Food Chem. 63 (2015) 3615-3626. https://doi.org/10.1021/jf506326t.
D. Cai, S.C. Zhao, D.L, Li, et al., Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians, Nutrients 8 (2016) 2-19. https://doi.org/10.3390/nu8090564.
H.E. Seifried, D.E. Anderson, E.I. Fisher, et al., A review of the interaction among dietary antioxidants and reactive oxygen species, J. Nutr. Biochem. 18 (2007) 567-579. https://doi.org/10.1016/j.jnutbio.2006.10.007.
M. Valko, D. Leibfritz, J. Moncol, et al., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol. 39 (2007) 44-84. https://doi.org/10.1016/j.biocel.2006.07.001.
E.C. Ale, M.F. Rojas, J.A. Reinheimer, et al., Lactobacillus fermentum: could EPS production ability be responsible for functional properties?, Food Microbiol. 90 (2020) 103465. https://doi.org/10.1016/j.fm.2020.103465.
M. Kumari, H.K. Patel, A. Kokkiligadda, et al., Characterization of probiotic lactobacilli and development of fermented soymilk with improved technological properties, LWT-Food Sci. Technol. 154 (2022) 112827. https://doi.org/10.1016/j.lwt.2021.112827.
D.M. Liu, Y.Y. Huang, M.H. Liang, et al., Analysis of the probiotic characteristics and adaptability of Lactiplantibacillus plantarum DMDL 9010 to gastrointestinal environment by complete genome sequencing and corresponding phenotypes, LWT-Food Sci. Technol. 158 (2022) 113129. https://doi.org/10.1016/j.lwt.2022.113129.
E.D. Kim, H.S. Lee, K.T. Kim, et al., Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of yogurt supplemented with Lactiplantibacillus plantarum NK181 and Lactobacillus delbrueckii KU200171 and sensory evaluation, Foods 10 (2021) 2324. https://doi.org/10.3390/foods10102324.
P. Khatantuul, L. Leona, D. Andrea, et al., The impact of cell-free supernatants of Lactococcus lactis subsp. lactis strains on the tyramine formation of Lactobacillus and Lactiplantibacillus strains isolated from cheese and beer, Food Microbiol. 99 (2021) 103813. https://doi.org/10.1016/j.fm.2021.103813.
C. Liang, X.H. Zhou, P.M. Gong, et al., Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice, Food Funct. 10 (2021) 4315-4324. https://doi.org/10.1039/d1fo00260k.
Q.Q. Zhou, R.C. Gu, P. Li, et al., Anti-Salmonella mode of action of natural L-phenyl lactic acid purified from Lactobacillus plantarum ZJ316, Appl. Microbiol. Biot. 104 (2020) 5283-5292. https://doi.org/10.1007/s00253-020-10503-4.
G.Q. Mu, H.Y. Li, Y.F. Tuo, Antioxidative effect of Lactobacillus plantarum Y44 on 2,2′-azobis (2-methylpropionamidine) dihydrochloride (ABAP)-damaged Caco-2 cells, J. Dairy Sci. 102 (2019) 6863-6875. https://doi.org/10.3168/jds.2019-16447.
X.M. Yu, Y.J. Li, Q.L. Wu, et al., Genomic analysis for antioxidant property of Lactobacillus plantarum FLPL05 from Chinese longevity people, Probiotics Antimicro. 12 (2020) 1451-1458. https://doi.org/10.1007/s12602-020-09704-0.
A. Vetuschi, N. Battista, S. Pompili, et al., The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis, Nutrition 94 (2022) 111511. https://doi.org/10.1016/j.nut.2021.111511.
J.S. Liu, X.F. Li, F.F. Song, et al., Dietary supplementation with low-dose xylooligosaccharide promotes the anti-Salmonella activity of probiotic Lactiplantibacillus plantarum ZS2058 in a murine model, Food Res. Int. 151 (2022) 110858. https://doi.org/10.1016/j.foodres.2021.110858.
N. Adriana, Z.S. Małgorzata, R.K. Justyna, et al., Anticancer potential of post-fermentation media and cell extracts of probiotic strains: an in vitro study, Cancers 7 (2022) 1853. https://doi.org/10.3390/cancers14071853.
Y.G. Gu, J. Bai, J.Y. Zhang, et al., Lactiplantibacillus plantarum fermented barley extracts ameliorate HFD-induced muscle dysfunction via mitophagy, J. Sci. Food Agric. 102 (2022) 5261-5271. https://doi.org/10.1002/jsfa.11879.
Y. Gao, Y.J. Liu, M.Y. Sun, et al., Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics, J. Dairy Sci. 103 (2020) 5916-5930. https://doi.org/10.3168/jds.2019-18047.
J. Wang, H.F. Ji, S.X. Wang, et al., Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota, Front. Microbio. 9 (2018) 1953. https://doi.org/10.3389/fmicb.2018.01953.
L.J. Zhang, Y. Meng, J.Y. Li, et al., Lactiplantibacillus plantarum Y42 in biofilm and planktonic states improves intestinal barrier integrity and modulates gut microbiota of BALB/c mice, Foods 11 (2022) 1451. https://doi.org/10.3390/foods11101451.
A.E. Yetiman, A. Keskin, B.N. Darendeli, et al., Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage, Food Biosci. 46 (2022) 101499. https://doi.org/10.1016/j.fbio.2021.101499.
B.Y. Mao, R.M. Yin, X.S. Li, et al., Comparative genomic analysis of Lactiplantibacillus plantarum isolated from different Niches, Genes 12 (2021) 241. https://doi.org/10.3390/genes12020241.
L. Axelsson, I. Rud, K. Naterstad, et al., Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730), J. Bacteriol. 194 (2012) 2391-2392.
Y.J. Wang, H.Y. Yang, G.Q. Mu, et al., Safety evaluation and complete genome analysis emphasis on extracellular polysaccharide of two strains of Limosilactobacillus fermentum MWLf-4 and Lactipiantibacillus plantarum MWLp-12 from human milk, Food Biosci. 51 (2023) 102356. https://doi.org/10.1016/j.fbio.2023.102356.
P.K. Montso, C.C. Bezuidenhout, C. Mienie, et al., Genetic diversity and whole genome sequence analysis data of multidrug resistant atypical enteropathogenic Escherichia coli O177 strains: an assessment of food safety and public health implications, Int. J. Food Microbiol. 365 (2022) 109555. https://doi.org/10.1016/j.ijfoodmicro.2022.109555.
S. Koren, B.P. Walenz, K. Berlin, et al., Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res. (2017) 215087. https://doi.org/10.1101/gr.215087.116.
A.L. Delcher, K.A. Bratke, E.C. Powers, et al., Identifying bacterial genes and endosymbiont DNA with Glimmer, Bioinformatics 23 (2007) 673-679. https://doi.org/10.1093/bioinformatics/btm009.
W. Zhang, H.F. Ji, D.Y. Zhang, et al., Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs, Front. Physiol. 9 (2018) 1689. https://doi.org/10.3389/fphys.2018.01689.
C. Liu, W.J. Xue, H. Ding, et al., Lactobacillus probiotic potential of strains isolated from fermented vegetables in Shaanxi, China, Front. Microbio. 12 (2021) 774903. https://doi.org/10.3389/fmicb.2021.774903.
E. Kingkaew, H. Konno, Y. Hosaka, et al., Probiogenomic analysis of Lactiplantibacillus sp. LM14-2 from fermented Mussel (Hoi-dong), and evaluation of its cholesterol-lowering and immunomodulation effects, Probiotics Antimicro. 15 (2022) 1206-1220. https://doi.org/10.1007/s12602-022-09977-7.
J. Xing, G. Wang, Z. Gu, et al., Cellular model to assess the antioxidant activity of lactobacilli, RSC Adv. 5 (2015) 37626-37634. https://doi.org/10.1039/C5RA02215K.
S. Plessas, D.E. Kiousi, M. Rathosi, et al., Isolation of a Lactobacillus paracasei strain with probiotic attributes from kefir grains, Biomedicines 8 (2020) 594. https://doi.org/10.3390/biomedicines8120594.
L.Y. Xiao, X.J. Ge, L. Yang, et al., Anticancer potential of exopolysaccharide from Lactobacillus helveticus MB2-1 on human colon cancer HT-29 cell via apoptosis induction, Food Funct. 11 (2020) 10170-10181. https://doi.org/10.1039/d0fo01345e.
F.L. Ma, Y.L. Song, M.Y. Sun, et al., Exopolysaccharide produced by Lactiplantibacillus plantarum-12 alleviates intestinal inflammation and colon cancer symptoms by modulating the gut microbiome and metabolites of C57BL/6 mice treated by Azoxymethane/Dextran sulfate sodium salt, Foods 10 (2021) 3060. https://doi.org/10.3390/foods10123060.
K.J. Lo, S.S. Lin, C.W. Lu, et al., Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3), Sci. Rep. 8 (2018) 12769. https://doi.org/10.1038/s41598-018-31128-8.
L. Cai, S.W. Zheng, Y.J. Shen, et al., Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material, Bioresource Technol. 260 (2018) 141-149. https://doi.org/10.1016/j.biortech.2018.03.121.
X.M. Yu, X.L. Wu, N.P. Shah, et al., Interaction between Bifidobacterium bifidum and Listeria monocytogenes enhances antioxidant activity through oxidoreductase system, LWT-Food Sci. Technol. 127 (2020) 109209. https://doi.org/10.1016/j.lwt.2020.109209.
C. Messaoud, A. Laabidi, M. Boussaid, Myrtus communis L. infusions: the effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities, J. Food Sci. 77 (2012) C1-C7. https://doi.org/10.1111/j.1750-3841.2012.02849.x.
Y. Li, J. Gao, L. Xue, et al., Limosilactobacillus fermentum determination of antiviral mechanism of centenarian gut-derived against norovirus, Front. Nutr. 9 (2022) 812623. https://doi.org/10.3389/fnut.2022.812623.
M. Deng, X. Wu, X. Duan, et al., Lactobacillus paracasei L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway, Food Funct. 12 (2021) 10700-10713. https://doi.org/10.1039/d1fo02077c.
M.H. Ren, H. Li, Z. Fu, et al., Centenarian-sourced Lactobacillus casei combined with dietary fiber complex ameliorates brain and gut function in aged mice, Nutrients 14 (2022) 324. https://doi.org/10.3390/nu14020324.
Y.L. Hao, D.W. Huang, H.Y. Guo, et al., Complete genome sequence of Bifidobacterium longum subsp. Longum BBMN68, a new strain from a healthy Chinese centenarian, J. Bacteriol. 193 (2011) 787-788. https://doi.org/10.1128/JB.01213-10.
F. Wang, G.H. Huang, D. Cai, et al., Qualitative and semiquantitative analysis of fecal Bifidobacterium species in centenarians living in Bama, Guangxi, China, Curr. Microbiol. 71 (2015) 143-149. https://doi.org/10.1007/s00284-015-0804-z.
Y. Ni, X. Yang, L. Zheng, et al., Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota, Mol. Nutr. Food Res. 63 (2019) e1900603. https://doi.org/10.1002/mnfr.201900603.
Q.Q. Zhou, N. Qureshi, B.Y. Xue, et al., Preventive and therapeutic effect of Lactobacillus paracasei ZFM54 on helicobacter pylori-induced gastritis by ameliorating inflammation and restoring gastric microbiota in mice model, Front. Nutr. 9 (2022) 972569. https://doi.org/10.3389/fnut.2022.972569.
C. Dunne, B. Dolan, M. Clyne, Factors that mediate colonization of the human stomach by Helicobacter pylori, World J. Gastroenterol. 20 (2014) 5610-5624. https://doi.org/10.3748/wjg.v20.i19.5610.
L. Merino, F.M. Trejo, G. de Antoni, et al., Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry, Food Res. Int. 123 (2019) 58-65. https://doi.org/10.1016/j.foodres.2019.04.067.
C.C. Honey, T.R. Keerthi, Probiotic potency of Lactobacillus plantarum KX519413 and KX519414 isolated from honey bee gut, FEMS Microbiol. Lett. 365 (2018) 1-8. https://doi.org/10.1093/femsle/fnx285.
J.Y. Zhang, P. Wang, C. Tan, et al., Integrated transcriptomics and metabolomics unravel the metabolic pathway variations for barley β-glucan before and after fermentation with L. plantarum DY-1, Food Funct. 13 (2022) 4302-4314. https://doi.org/10.1039/d1fo02450g.
K.L. Wolfe, R.H. Liu, Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements, J. Agric. Food Chem. 55 (2007) 8896-8907. https://doi.org/10.1021/jf0715166.
S.S.K. Wijeratne, S.L. Cuppett, V. Schlegel, Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells, J. Agric. Food Chem. 53 (2005) 8768-8774. https://doi.org/10.1021/jf0512003.
Y.C. Hou, X.S. Li, X.Y. Liu, et al., Transcriptomic responses of Caco-2 cells to Lactobacillus rhamnosus GG and Lactobacillus plantarum J26 against oxidative stress, J. Dairy Sci. 102 (2019) 7684-7696. https://doi.org/10.3168/jds.2019-16332.
H.S. Ejtahed, J. Mohtadinia, A. Homayounirad, et al., Probiotic yogurt improves antioxidant status in type 2 diabetic patients, Nutrition 28 (2012) 539-543. https://doi.org/10.1016/j.nut.2011.08.013.
S.N. Kang, Z.Y. Zhang, Y. Yu, et al., A recombinant Bifidobacterium bifidum BGN4 strain expressing the streptococcal superoxide dismutase gene ameliorates inflammatory bowel disease, Microb. Cell Fact. 21 (2022) 113. https://doi.org/10.1186/s12934-022-01840-2.
B.B. Zhao, J. Meng, Q.X. Zhang, et al., Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress, Int. J. Biol. Macromol. 102 (2017) 76-83. https://doi.org/10.1016/j.ijbiomac.2017.03.160.
K.J. Han, J.E. Lee, N.K. Lee, et al., Antioxidant and anti-inflammatory effect of probiotic Lactobacillus plantarum KU15149 derived from Korean homemade diced-radish kimchi, J. Microbiol. Biotechnol. 30 (2020) 591-598. https://doi.org/10.4014/jmb.2002.02052.
Y.M. Jo, H. Seo, G.Y. Kim, et al., Lactobacillus pentosus SMB718 as a probiotic starter producing allyl mercaptan in garlic and onion-enriched fermentation, Food Funct. 11 (2021) 10913-10924. https://doi.org/10.1039/d0fo02000a.
A. Orlando, M. Linsalata, G. Bianco, et al., Lactobacillus rhamnosus GG protects the epithelial barrier of Wistar rats from the pepsin-trypsin-digested gliadin (PTG)-induced enteropathy, Nutrients 10 (2018) 1698. https://doi.org/10.3390/nu10111698.
S.J. Liu, Y. Zhao, X.W. Xu, et al., Lactiplantibacillus plantarum P101 alleviates alcoholic liver injury by modulating the Nrf2/HO-1 pathway in mice, J. Appl. Microbiol. 134 (2022) 1-10. https://doi.org/10.1093/jambio/lxac032.
Y.H Lee, S.J.F. Chong, S. Pervaiz, The anti-oxidant and pro-oxidant dichotomy of Bcl-2, Biol. Chem. 397 (2016) 585-593. https://doi.org/10.1515/hsz-2016-0127.