PDF (3.4 MB)
Collect
Submit Manuscript
Article | Open Access

Improvement of Lactiplantibacillus plantarum MWFLp-182 on oxidative deficits induced by in 2,2’-azobis(2-methylpropionamidine) dihydrochloride and the relating key gene analysis

Hui Niea,b,cXutong Maa,bFanyu Konga,bYanghe LuocGuangqing Mua,b()Xiaomeng Wua,b()
School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
Dalian Probiotic Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou 542899, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

L. plantarum MWFLp-182 was isolated from fecal of long-living elderly individuals.

L. plantarum MWFLp-182 showed favorable probiotic potential.

L. plantarum MWFLp-182 could reduce the damage by ABAP-stimulated HT-29 cells.

Graphical Abstract

View original image Download original image

Abstract

Lactiplantibacillus plantarum MWFLp-182 was originally isolated from the feces of long-living elderly individuals in Hezhou city, Guangxi, China. L. plantarum MWFLp-182 showed favorable gastric and intestinal tolerance compared with Lactiplantibacillus rhamnosus GG (LGG). L. plantarum MWFLp-182 was further examined for its antioxidant and anti-inflammatory activity in ABAP-treated HT-29 cells. Importantly, it enhanced the expression of anti-inflammatory factor (interleukin-10 (IL-10)), antioxidant cytokines (superoxide dismutase (SOD), glutathione peroxidase (GPx), nuclear factor erythroid 2-related factor (Nrf2), and hemeoxygenase 1 (HO-1)), B-cell lymphoma-2 (Bcl-2), and tight junction (Zonula occludens protein 1 (ZO-1), Claudin-1, and Occludin) proteins and genes, and reduced reactive oxygen species (ROS). The complete genome of L. plantarum MWFLp-182 contained a single circular chromosome that was 3257196 bp long, with a G + C content of 44.49%, and a single circular plasmid that was 53560 bp long. The genes tpx, trxA, trxB, npr, nrdH, dps, recA, gpx, gshA and arsC in this strain were related to antioxidant function; the key genes involved in antioxidant function were further investigated. In this study, we identified a probiotic candidate with antioxidant properties.

Electronic Supplementary Material

Download File(s)
fshw-14-2-9250026_ESM1.doc (810.5 KB)
fshw-14-2-9250026_ESM2.csv (3 KB)
fshw-14-2-9250026_ESM3.csv (38.4 KB)

References

[1]

E. Biagi, C. Franceschi, S. Rampelli, et al., Gut microbiota and extreme longevity, Curr. Biol. 26 (2016) 1480-1485. https://doi.org/10.1016/j.cub.2016.04.016.

[2]

V. Mishra, C. Shah, N. Mokashe, et al., Probiotics as potential antioxidants: a systematic review, J. Agric. Food Chem. 63 (2015) 3615-3626. https://doi.org/10.1021/jf506326t.

[3]

D. Cai, S.C. Zhao, D.L, Li, et al., Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians, Nutrients 8 (2016) 2-19. https://doi.org/10.3390/nu8090564.

[4]

H.E. Seifried, D.E. Anderson, E.I. Fisher, et al., A review of the interaction among dietary antioxidants and reactive oxygen species, J. Nutr. Biochem. 18 (2007) 567-579. https://doi.org/10.1016/j.jnutbio.2006.10.007.

[5]

M. Valko, D. Leibfritz, J. Moncol, et al., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol. 39 (2007) 44-84. https://doi.org/10.1016/j.biocel.2006.07.001.

[6]

E.C. Ale, M.F. Rojas, J.A. Reinheimer, et al., Lactobacillus fermentum: could EPS production ability be responsible for functional properties?, Food Microbiol. 90 (2020) 103465. https://doi.org/10.1016/j.fm.2020.103465.

[7]

M. Kumari, H.K. Patel, A. Kokkiligadda, et al., Characterization of probiotic lactobacilli and development of fermented soymilk with improved technological properties, LWT-Food Sci. Technol. 154 (2022) 112827. https://doi.org/10.1016/j.lwt.2021.112827.

[8]

D.M. Liu, Y.Y. Huang, M.H. Liang, et al., Analysis of the probiotic characteristics and adaptability of Lactiplantibacillus plantarum DMDL 9010 to gastrointestinal environment by complete genome sequencing and corresponding phenotypes, LWT-Food Sci. Technol. 158 (2022) 113129. https://doi.org/10.1016/j.lwt.2022.113129.

[9]

E.D. Kim, H.S. Lee, K.T. Kim, et al., Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of yogurt supplemented with Lactiplantibacillus plantarum NK181 and Lactobacillus delbrueckii KU200171 and sensory evaluation, Foods 10 (2021) 2324. https://doi.org/10.3390/foods10102324.

[10]

P. Khatantuul, L. Leona, D. Andrea, et al., The impact of cell-free supernatants of Lactococcus lactis subsp. lactis strains on the tyramine formation of Lactobacillus and Lactiplantibacillus strains isolated from cheese and beer, Food Microbiol. 99 (2021) 103813. https://doi.org/10.1016/j.fm.2021.103813.

[11]

C. Liang, X.H. Zhou, P.M. Gong, et al., Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice, Food Funct. 10 (2021) 4315-4324. https://doi.org/10.1039/d1fo00260k.

[12]

Q.Q. Zhou, R.C. Gu, P. Li, et al., Anti-Salmonella mode of action of natural L-phenyl lactic acid purified from Lactobacillus plantarum ZJ316, Appl. Microbiol. Biot. 104 (2020) 5283-5292. https://doi.org/10.1007/s00253-020-10503-4.

[13]

G.Q. Mu, H.Y. Li, Y.F. Tuo, Antioxidative effect of Lactobacillus plantarum Y44 on 2,2′-azobis (2-methylpropionamidine) dihydrochloride (ABAP)-damaged Caco-2 cells, J. Dairy Sci. 102 (2019) 6863-6875. https://doi.org/10.3168/jds.2019-16447.

[14]

X.M. Yu, Y.J. Li, Q.L. Wu, et al., Genomic analysis for antioxidant property of Lactobacillus plantarum FLPL05 from Chinese longevity people, Probiotics Antimicro. 12 (2020) 1451-1458. https://doi.org/10.1007/s12602-020-09704-0.

[15]

A. Vetuschi, N. Battista, S. Pompili, et al., The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis, Nutrition 94 (2022) 111511. https://doi.org/10.1016/j.nut.2021.111511.

[16]

J.S. Liu, X.F. Li, F.F. Song, et al., Dietary supplementation with low-dose xylooligosaccharide promotes the anti-Salmonella activity of probiotic Lactiplantibacillus plantarum ZS2058 in a murine model, Food Res. Int. 151 (2022) 110858. https://doi.org/10.1016/j.foodres.2021.110858.

[17]

N. Adriana, Z.S. Małgorzata, R.K. Justyna, et al., Anticancer potential of post-fermentation media and cell extracts of probiotic strains: an in vitro study, Cancers 7 (2022) 1853. https://doi.org/10.3390/cancers14071853.

[18]

Y.G. Gu, J. Bai, J.Y. Zhang, et al., Lactiplantibacillus plantarum fermented barley extracts ameliorate HFD-induced muscle dysfunction via mitophagy, J. Sci. Food Agric. 102 (2022) 5261-5271. https://doi.org/10.1002/jsfa.11879.

[19]

Y. Gao, Y.J. Liu, M.Y. Sun, et al., Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics, J. Dairy Sci. 103 (2020) 5916-5930. https://doi.org/10.3168/jds.2019-18047.

[20]

J. Wang, H.F. Ji, S.X. Wang, et al., Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota, Front. Microbio. 9 (2018) 1953. https://doi.org/10.3389/fmicb.2018.01953.

[21]

L.J. Zhang, Y. Meng, J.Y. Li, et al., Lactiplantibacillus plantarum Y42 in biofilm and planktonic states improves intestinal barrier integrity and modulates gut microbiota of BALB/c mice, Foods 11 (2022) 1451. https://doi.org/10.3390/foods11101451.

[22]

A.E. Yetiman, A. Keskin, B.N. Darendeli, et al., Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage, Food Biosci. 46 (2022) 101499. https://doi.org/10.1016/j.fbio.2021.101499.

[23]

B.Y. Mao, R.M. Yin, X.S. Li, et al., Comparative genomic analysis of Lactiplantibacillus plantarum isolated from different Niches, Genes 12 (2021) 241. https://doi.org/10.3390/genes12020241.

[24]

L. Axelsson, I. Rud, K. Naterstad, et al., Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730), J. Bacteriol. 194 (2012) 2391-2392.

[25]

Y.J. Wang, H.Y. Yang, G.Q. Mu, et al., Safety evaluation and complete genome analysis emphasis on extracellular polysaccharide of two strains of Limosilactobacillus fermentum MWLf-4 and Lactipiantibacillus plantarum MWLp-12 from human milk, Food Biosci. 51 (2023) 102356. https://doi.org/10.1016/j.fbio.2023.102356.

[26]

P.K. Montso, C.C. Bezuidenhout, C. Mienie, et al., Genetic diversity and whole genome sequence analysis data of multidrug resistant atypical enteropathogenic Escherichia coli O177 strains: an assessment of food safety and public health implications, Int. J. Food Microbiol. 365 (2022) 109555. https://doi.org/10.1016/j.ijfoodmicro.2022.109555.

[27]

S. Koren, B.P. Walenz, K. Berlin, et al., Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res. (2017) 215087. https://doi.org/10.1101/gr.215087.116.

[28]

A.L. Delcher, K.A. Bratke, E.C. Powers, et al., Identifying bacterial genes and endosymbiont DNA with Glimmer, Bioinformatics 23 (2007) 673-679. https://doi.org/10.1093/bioinformatics/btm009.

[29]

W. Zhang, H.F. Ji, D.Y. Zhang, et al., Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs, Front. Physiol. 9 (2018) 1689. https://doi.org/10.3389/fphys.2018.01689.

[30]

C. Liu, W.J. Xue, H. Ding, et al., Lactobacillus probiotic potential of strains isolated from fermented vegetables in Shaanxi, China, Front. Microbio. 12 (2021) 774903. https://doi.org/10.3389/fmicb.2021.774903.

[31]

E. Kingkaew, H. Konno, Y. Hosaka, et al., Probiogenomic analysis of Lactiplantibacillus sp. LM14-2 from fermented Mussel (Hoi-dong), and evaluation of its cholesterol-lowering and immunomodulation effects, Probiotics Antimicro. 15 (2022) 1206-1220. https://doi.org/10.1007/s12602-022-09977-7.

[32]

J. Xing, G. Wang, Z. Gu, et al., Cellular model to assess the antioxidant activity of lactobacilli, RSC Adv. 5 (2015) 37626-37634. https://doi.org/10.1039/C5RA02215K.

[33]

S. Plessas, D.E. Kiousi, M. Rathosi, et al., Isolation of a Lactobacillus paracasei strain with probiotic attributes from kefir grains, Biomedicines 8 (2020) 594. https://doi.org/10.3390/biomedicines8120594.

[34]

L.Y. Xiao, X.J. Ge, L. Yang, et al., Anticancer potential of exopolysaccharide from Lactobacillus helveticus MB2-1 on human colon cancer HT-29 cell via apoptosis induction, Food Funct. 11 (2020) 10170-10181. https://doi.org/10.1039/d0fo01345e.

[35]

F.L. Ma, Y.L. Song, M.Y. Sun, et al., Exopolysaccharide produced by Lactiplantibacillus plantarum-12 alleviates intestinal inflammation and colon cancer symptoms by modulating the gut microbiome and metabolites of C57BL/6 mice treated by Azoxymethane/Dextran sulfate sodium salt, Foods 10 (2021) 3060. https://doi.org/10.3390/foods10123060.

[36]

K.J. Lo, S.S. Lin, C.W. Lu, et al., Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3), Sci. Rep. 8 (2018) 12769. https://doi.org/10.1038/s41598-018-31128-8.

[37]

L. Cai, S.W. Zheng, Y.J. Shen, et al., Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material, Bioresource Technol. 260 (2018) 141-149. https://doi.org/10.1016/j.biortech.2018.03.121.

[38]

X.M. Yu, X.L. Wu, N.P. Shah, et al., Interaction between Bifidobacterium bifidum and Listeria monocytogenes enhances antioxidant activity through oxidoreductase system, LWT-Food Sci. Technol. 127 (2020) 109209. https://doi.org/10.1016/j.lwt.2020.109209.

[39]

C. Messaoud, A. Laabidi, M. Boussaid, Myrtus communis L. infusions: the effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities, J. Food Sci. 77 (2012) C1-C7. https://doi.org/10.1111/j.1750-3841.2012.02849.x.

[40]

Y. Li, J. Gao, L. Xue, et al., Limosilactobacillus fermentum determination of antiviral mechanism of centenarian gut-derived against norovirus, Front. Nutr. 9 (2022) 812623. https://doi.org/10.3389/fnut.2022.812623.

[41]

M. Deng, X. Wu, X. Duan, et al., Lactobacillus paracasei L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway, Food Funct. 12 (2021) 10700-10713. https://doi.org/10.1039/d1fo02077c.

[42]

M.H. Ren, H. Li, Z. Fu, et al., Centenarian-sourced Lactobacillus casei combined with dietary fiber complex ameliorates brain and gut function in aged mice, Nutrients 14 (2022) 324. https://doi.org/10.3390/nu14020324.

[43]

Y.L. Hao, D.W. Huang, H.Y. Guo, et al., Complete genome sequence of Bifidobacterium longum subsp. Longum BBMN68, a new strain from a healthy Chinese centenarian, J. Bacteriol. 193 (2011) 787-788. https://doi.org/10.1128/JB.01213-10.

[44]

F. Wang, G.H. Huang, D. Cai, et al., Qualitative and semiquantitative analysis of fecal Bifidobacterium species in centenarians living in Bama, Guangxi, China, Curr. Microbiol. 71 (2015) 143-149. https://doi.org/10.1007/s00284-015-0804-z.

[45]

Y. Ni, X. Yang, L. Zheng, et al., Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota, Mol. Nutr. Food Res. 63 (2019) e1900603. https://doi.org/10.1002/mnfr.201900603.

[46]

Q.Q. Zhou, N. Qureshi, B.Y. Xue, et al., Preventive and therapeutic effect of Lactobacillus paracasei ZFM54 on helicobacter pylori-induced gastritis by ameliorating inflammation and restoring gastric microbiota in mice model, Front. Nutr. 9 (2022) 972569. https://doi.org/10.3389/fnut.2022.972569.

[47]

C. Dunne, B. Dolan, M. Clyne, Factors that mediate colonization of the human stomach by Helicobacter pylori, World J. Gastroenterol. 20 (2014) 5610-5624. https://doi.org/10.3748/wjg.v20.i19.5610.

[48]

L. Merino, F.M. Trejo, G. de Antoni, et al., Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry, Food Res. Int. 123 (2019) 58-65. https://doi.org/10.1016/j.foodres.2019.04.067.

[49]

C.C. Honey, T.R. Keerthi, Probiotic potency of Lactobacillus plantarum KX519413 and KX519414 isolated from honey bee gut, FEMS Microbiol. Lett. 365 (2018) 1-8. https://doi.org/10.1093/femsle/fnx285.

[50]

J.Y. Zhang, P. Wang, C. Tan, et al., Integrated transcriptomics and metabolomics unravel the metabolic pathway variations for barley β-glucan before and after fermentation with L. plantarum DY-1, Food Funct. 13 (2022) 4302-4314. https://doi.org/10.1039/d1fo02450g.

[51]

K.L. Wolfe, R.H. Liu, Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements, J. Agric. Food Chem. 55 (2007) 8896-8907. https://doi.org/10.1021/jf0715166.

[52]

S.S.K. Wijeratne, S.L. Cuppett, V. Schlegel, Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells, J. Agric. Food Chem. 53 (2005) 8768-8774. https://doi.org/10.1021/jf0512003.

[53]

Y.C. Hou, X.S. Li, X.Y. Liu, et al., Transcriptomic responses of Caco-2 cells to Lactobacillus rhamnosus GG and Lactobacillus plantarum J26 against oxidative stress, J. Dairy Sci. 102 (2019) 7684-7696. https://doi.org/10.3168/jds.2019-16332.

[54]

H.S. Ejtahed, J. Mohtadinia, A. Homayounirad, et al., Probiotic yogurt improves antioxidant status in type 2 diabetic patients, Nutrition 28 (2012) 539-543. https://doi.org/10.1016/j.nut.2011.08.013.

[55]

S.N. Kang, Z.Y. Zhang, Y. Yu, et al., A recombinant Bifidobacterium bifidum BGN4 strain expressing the streptococcal superoxide dismutase gene ameliorates inflammatory bowel disease, Microb. Cell Fact. 21 (2022) 113. https://doi.org/10.1186/s12934-022-01840-2.

[56]

B.B. Zhao, J. Meng, Q.X. Zhang, et al., Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress, Int. J. Biol. Macromol. 102 (2017) 76-83. https://doi.org/10.1016/j.ijbiomac.2017.03.160.

[57]

K.J. Han, J.E. Lee, N.K. Lee, et al., Antioxidant and anti-inflammatory effect of probiotic Lactobacillus plantarum KU15149 derived from Korean homemade diced-radish kimchi, J. Microbiol. Biotechnol. 30 (2020) 591-598. https://doi.org/10.4014/jmb.2002.02052.

[58]

Y.M. Jo, H. Seo, G.Y. Kim, et al., Lactobacillus pentosus SMB718 as a probiotic starter producing allyl mercaptan in garlic and onion-enriched fermentation, Food Funct. 11 (2021) 10913-10924. https://doi.org/10.1039/d0fo02000a.

[59]

A. Orlando, M. Linsalata, G. Bianco, et al., Lactobacillus rhamnosus GG protects the epithelial barrier of Wistar rats from the pepsin-trypsin-digested gliadin (PTG)-induced enteropathy, Nutrients 10 (2018) 1698. https://doi.org/10.3390/nu10111698.

[60]

S.J. Liu, Y. Zhao, X.W. Xu, et al., Lactiplantibacillus plantarum P101 alleviates alcoholic liver injury by modulating the Nrf2/HO-1 pathway in mice, J. Appl. Microbiol. 134 (2022) 1-10. https://doi.org/10.1093/jambio/lxac032.

[61]

Y.H Lee, S.J.F. Chong, S. Pervaiz, The anti-oxidant and pro-oxidant dichotomy of Bcl-2, Biol. Chem. 397 (2016) 585-593. https://doi.org/10.1515/hsz-2016-0127.

Food Science and Human Wellness
Article number: 9250026
Cite this article:
Nie H, Ma X, Kong F, et al. Improvement of Lactiplantibacillus plantarum MWFLp-182 on oxidative deficits induced by in 2,2’-azobis(2-methylpropionamidine) dihydrochloride and the relating key gene analysis. Food Science and Human Wellness, 2025, 14(2): 9250026. https://doi.org/10.26599/FSHW.2024.9250026
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return