Pu-erh tea, a traditional Chinese beverage, performs an anti-obesity function, but the correlation between its components and efficacy remains unknown. Here, we screened two Pu-erh teas with significant anti-obesity efficacies from 11 teas. In vitro experiments revealed that lipid accumulation in L02 cells and lipid synthesis in 3T3-L1 cells were significantly better inhibited by Tea-B than Tea-A. Further in vivo experiments using model mice revealed that the differences in chemical components generated two pathways in the anti-obesity efficacy and mechanism of Pu-erh teas. Tea-A changes the histomorphology of brown adipose tissue (BAT) and increases the abundance of Coriobacteriaceae_UCG_002 and cyclic AMP in guts through high chemical contents of cyclopentasiloxane, decamethyl, tridecane and 1,2,3-trimethoxybenzene, eventually increasing BAT activation and fat browning gene expression; the high content of hexadecane and 1,2-dimethoxy-benzene in Tea-B reduces white adipose tissue (WAT) accumulation and the process of fatty liver, increases the abundance of Odoribacter and sphinganine 1-phosphate, inhibits the expression of lipid synthesis and transport genes. These mechanistic findings on the association of the representative bioactive components in Pu-erh teas with the anti-obesity phenotypes, gut microbes, gut metabolite structure and anti-obesity pathways, which were obtained for the first time, provide foundations for developing functional Pu-erh tea.
A.C. Carpentier, D.P. Blondin, K.A. Virtanen, et al., Brown adipose tissue energy metabolism in humans, Front. Endocrinol. 9 (2018) 447. https://doi.org/10.3389/fendo.2018.00447.
X.M. Liu, Z.J. Zheng, X.M. Zhu, et al., Brown adipose tissue transplantation improves whole-body energy metabolism, Cell Res. 23 (2013) 851-854. https://doi.org/10.1038/cr.2013.64.
E.A. Grice, J.A. Segre, The human microbiome: our second genome, Ann. Rev. Genom. Human Genet. 13 (2012) 151-170. https://doi.org/10.1146/annurev-genom-090711-163814.
R. Kumar, U. Sood, V. Gupta, et al., Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis, Indian J. Microbiol. 60 (2020) 12-25. https://doi.org/10.1007/s12088-019-00808-y.
J.Y. Liu, D. He, Y.F. Xing, et al., Effects of bioactive components of Pu-erh tea on gut microbiomes and health: a review, Food Chem. 353 (2021) 129439. https://doi.org/10.1016/j.foodchem.2021.129439.
Y. Oi, I.C. Hou, H. Fujita, et al., Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid, Phytother. Res. 26 (2012) 475-481. https://doi.org/10.1002/ptr.3602.
X.Y. Gao, Q.H. Xie, P. Kong, et al., Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice, Infect. Immun. 86 (2018) e00601-e00617. https://doi.org/10.1128/iai.00601-17.
S. Miquel, R. Martín, O. Rossi, et al., Faecalibacterium prausnitzii and human intestinal health, Curr. Opin. Microbiol. 16 (2013) 255-261. https://doi.org/10.1016/j.mib.2013.06.003.
F.J. Huang, X.J. Zheng, X.H. Ma, et al., Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism, Nat. Commun. 10 (2019) 1-17. https://doi.org/10.1038/s41467-019-12896-x.
P.P. Long, M.C. Wen, D. Granato, et al., Untargeted and targeted metabolomics reveal the chemical characteristic of Pu-erh tea (Camellia assamica) during pile-fermentation, Food Chem. 311 (2020) 1-8. https://doi.org/10.1016/j.foodchem.2019.125895.
M. Zhao, X.Q. Su, B. Nian, et al., Integrated meta-omics approaches to understand the microbiome of spontaneous fermentation of traditional Chinese Pu-erh tea, Msystems 4 (2019) 00680-19. https://doi.org/10.1128/msystems.
L. Zhang, C.T. Ho, J. Zhou, et al., Chemistry and biological activities of processed Camellia sinensis teas: a comprehensive review, Compreh. Rev. Food Sci. Food Saf. 18 (2019) 1474-1495. https://doi.org/10.1111/1541-4337.12479.
N. Johar, I. Ahmad, A. Dufresne, Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk, Indust. Crops Prod. 37 (2012) 93-99. https://doi.org/10.1016/j.indcrop.2011.12.016.
X.L. Wei, X.G. Xi, M.X. Wu, et al., A novel method for quantitative determination of tea polysaccharide by resonance light scattering, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79 (2011) 928-933. https://doi.org/10.1016/j.saa.2011.03.053.
J. Li, Y.F. Yao, J.Q. Wang. et al., Rutin, γ-aminobutyric acid, gallic acid, and caffeine negatively affect the sweet-mellow taste of congou black tea infusions, Molecules 24 (2019) 4221. https://doi.org/10.3390/molecules24234221.
S.D. Lü, Y.S. Wu, Y.Z. Song. et al., Multivariate analysis based on GC-MS fingerprint and volatile composition for the quality evaluation of Pu-erh green tea, Food Anal. Methods 8 (2015) 321-333. https://doi.org/10.1007/s12161-014-9900-0.
C.C. Wu, Y.W. Huang, C.Y. Hou, et al., The anti-obesity effects of lemon fermented products in 3T3-L1 preadipocytes and in a rat model with high-calorie diet-induced obesity, Nutrients 13 (2021) 2809. https://doi.org/10.3390/nu13082809.
C. Chen, Y. Ma, W.Y. Gong, Steatosis and inflammation of L02 hepatocytes induced by sodium oleate, J. Hygiene Res. 49 (2020) 381-385.
J.Y. Liu, C.H. Zhang, B.Y. Zhang, et al., Comprehensive analysis of the characteristics and differences in adult and newborn brown adipose tissue (BAT): newborn BAT is a more active/dynamic BAT, Cells 9 (2020) 201. https://doi.org/10.3390/cells9010201.
C.H. Zhang, J.Y. Liu, X.Y. He, et al., Caulis spatholobi ameliorates obesity through activating brown adipose tissue and modulating the composition of gut microbiota, Intern. J. Mol. Sci. 20 (2019) 5150. https://doi.org/10.3390/ijms20205150.
K.M. Gharpure, S. Pradeep, M. Sans, et al., FABP4 as a key determinant of metastatic potential of ovarian cancer, Nat. Commun. 9 (2018) 1-14. https://doi.org/10.1038/s41467-018-04987-y.
J. Storch, A.E. Thumser, Tissue-specific functions in the fatty acid-binding protein family, J. Biol. Chem. 285 (2010) 32679-32683. https://doi.org/10.1074/jbc.R110.135210.
D.Y. Zhang, J.H. Liu, T. Xie, et al., Oleate acid-stimulated HMMR expression by CEBPα is associated with nonalcoholic steatohepatitis and hepatocellular carcinoma, Intern. J. Biol. Sci. 16 (2020) 2812-2827.
J.B. Kopp, A.Z. Rosenberg, M. Levi, Obesity and renal disease: introduction, Semi. Nephrol. 33 (2013) 1. https://doi.org/10.1016/j.semnephrol.2021.06.001.
M. Kissig, S. N. Shapira, P. Seale, SnapShot: brown and beige adipose thermogenesis, Cell 166 (2016) 258-258. http://dx.doi.org/10.1016/j.cell.2016.06.038.
S.R. Zhang, Y. Shi, J.L. Jiang, et al., Discriminant analysis of Pu-erh tea of different raw materials based on phytochemicals using chemometrics, Foods 11 (2022) 680. https://doi.org/10.3390/foods11050680.
C.Y. Bao, X.Y. Liu, H.J. Pu et al., Study on variation of main chemical components during Pu’er tea fermentation process of different raw materials, J. Food Saf. Qual. 6 (2015) 1279-1286.
A.B. Nair, S. Jacob, A simple practice guide for dose conversion between animals and human, J. Basic Clin. Pharm. 7 (2016) 27-31. https://doi.org/10.4103/0976-0105.177703.
G. Adewumi, Health-promoting fermented foods, Encyclopedia of Food Chemistry 2019 (2019) 399-418.
G. Das, S. Paramithiotis, B.S. Sivamaruthi, et al., Traditional fermented foods with anti-aging effect: a concentric review, Food Res. Intern. 134 (2020) 109269. https://doi.org/10.1016/j.foodres.2020.109269.
Z.F. Li, N. Wang, G.S.V. Raghavan, et al., Volatiles evaluation and dielectric properties measurements of Chinese spirits for quality assessment, Food Biopr. Technol. 4 (2011) 247-253. https://doi.org/10.1007/s11947-008-0162-y.
C. Fang, H. Du, X.J. Zheng, et al., Solid-state fermented Chinese alcoholic beverage (Baijiu) and ethanol resulted in distinct metabolic and microbiome responses, FASEB J. 2019 (2019) fj201802306R. https://doi.org/10.1096/fj.201802306R.
X.J. Deng, G.H. Huang, Q. Tu, et al., Evolution analysis of flavor-active compounds during artificial fermentation of Pu-erh tea, Food Chem. 357 (2021) 129783. https://doi.org/10.1016/j.foodchem.2021.129783.
M.J.R. Vestergaard, P. Breining, S.B. Pedersen, et al., Evaluation of active brown adipose tissue by the use of hyperpolarized[1-13C] pyruvate MRI in mice, Intern. J. Mol. 19 (2018) 2597. https://doi.org/10.3390/ijms19092597.
H.L. Zhu, Y.C. Xu, Z.Q. Jiang, et al., Effect of pyruvate on body weight and lipid metabolism of obese rats, Acta Nutrimenta Sinica 24 (2002) 229-232.
J.M. Duerden, C.J. Bates, Effect of riboflavin deficiency on lipid metabolism of liver and brown adipose tissue of sucking rat pups, British J. Nutr. 53 (1985) 107-115. https://doi.org/10.1079/BJN19850015.
Z.C. Wang, Q.A. Wang, Y. Liu, et al., Energy metabolism in brown adipose tissue, FEBS J. 288 (2021) 3647-3662. https://doi.org/10.1111/febs.16015.
D.F. Pisani, R.A. Ghandour, G.E. Beranger, et al., The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway, Mol. Metabol. 3 (2014) 834-847. https://doi.org/10.1016/j.molmet.2014.09.003.
A. Yang, W.I. Suh, N.K. Kang, et al., MAPK/ERK and JNK pathways regulate lipid synthesis and cell growth of Chlamydomonas reinhardtii under osmotic stress, respectively, Scientific Rep. 8 (2018) 1-12. https://doi.org/10.1038/s41598-018-32216-5.
W.W. Dai, S. Panserat, P.J. Elisabeth, et al., Amino acids attenuate insulin action on gluconeogenesis and promote fatty acid biosynthesis via mTORC1 signaling pathway in trout hepatocytes, Cell. Physiol. Biochem. 36 (2015) 1084-1100. https://doi.org/10.1159/000430281.
Q. Zhang, X.F. Sun, X.H Xiao, et al., Effects of maternal chromium restriction on the long-term programming in MAPK signaling pathway of lipid metabolism in mice, Nutrients 8 (2016) 488. https://doi.org/10.3390/nu8080488.
B.W. Bauer, S. Gangadoo, Y.S. Bajagai, et al., Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay, PLoS One 14 (2019) e0216853. https://doi.org/10.1371/journal.pone.0216853.
J.M. Hu, S.L. Lin, B.D. Zheng, et al., Short-chain fatty acids in control of energy metabolism, Crit. Rev. Food Sci. Nutr. 58 (2018) 1243-1249. https://doi.org/10.1080/10408398.2016.1245650.
W.L. Guo, Q.R. Xiang, B.Y. Mao, et al., Protective effects of microbiome-derived inosine on lipopolysaccharide-induced acute liver damage and inflammation in mice via mediating the TLR4/NF-κB pathway, J. Agricul. Food Chem. 69 (2021) 7619-7628. https://doi.org/10.1021/acs.jafc.1c01781.
B.W. Zhang, W.L. Sun, N. Yu, et al., Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats, J. Funct. Foods 46 (2018) 256-267. https://doi.org/10.1016/j.jff.2018.04.070.
N. Vallianou, G.S. Christodoulatos, I. Karampela, et al., Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives, Biomolecules 12 (2021) 56. https://doi.org/10.3390/biom12010056.
A.H. Togo, A. Diop, G. Dubourg, et al., Anaerotruncus massiliensis sp. nov., a succinate-producing bacterium isolated from human stool from an obese patient after bariatric surgery, New Microbes New Infect. 29 (2019) 100508. https://doi.org/10.1016/j.nmni.2019.01.004.
A.H. Togo, R. Valero, J. Delerce, et al., “Anaerotruncus massiliensis, ” a new species identified from human stool from an obese patient after bariatric surgery, New Microbes New Infect. 14 (2016) 56. https://doi.org/10.1016/j.nmni.2016.07.015.
J. Rodriguez, S. Hiel, A.M. Neyrinck, et al., Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients, Gut 69 (2020) 1975-1987. https://doi.org/10.1136/gutjnl-2019-319726.
L.Y. Chen, Y.Q. Duan, H.Q. Wei, et al., Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors, Expert Opin. Investigat. Drugs 28 (2019) 917-930. https://doi.org/10.1080/13543784.2019.1657825.
X. Wu, L. Qin, V. Fako, et al., Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments, Adv. Biol. Regul. 54 (2014) 214-221. https://doi.org/10.1016/j.jbior.2013.09.004.