PDF (6.8 MB)
Collect
Submit Manuscript
Show Outline
Figures (8)

Article | Open Access

Luteolin, a common flavone in vegetables, acts as a hormetin possessing neurotrophic function: signaling mediated by inducing mitochondrial stress

Alex Xiong Gaoa,bTracy Chenxi Xiaa,bMaggie Suisui Guoa,bGary Kawing Yuena,bKevin Qiyun Wua,bTina Tingxia Donga,bKarl Wah-Keung Tsima,b()
Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong 999077, China
Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518000, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

This study aims to uncover the hormetic process of luteolin, a common dietary flavone, in neuronal cells through its role in inducing mitochondrial stress. In rat pheochromocytoma PC12 cells, luteolin at low concentrations caused a mild and reversible loss of mitochondrial membrane potential (MMP), while high concentrations of luteolin triggered intense and sustained depolarization of MMP. The MMP disturbance was shown to have a close association with the trophic and/or toxic effects triggered by luteolin; because the common mitochondrial uncouplers shared similar bi-phase dose-response on cell viability, as that of luteolin. Along with the induced MMP pertubation, luteolin triggered the development of autophagy and mitophagy, as determined by mCherry-GFP-LC3B tandem protein, and by the co-localization of mitochondrial/lysosomal staining. Subsequent application of autophagy inhibitors in the cultures blocked the luteolin-induced neurotrophic activities and sensitized the cells to be less resistant to luteolin-mediated cytotoxicity. Other flavonoids also displayed similar properties in the cultures, indicating that these compounds act as hormetic pharmacological inducers that stimulate cells to become more resilient and adapt to threats. This study provides a unifying mechanistic explanation for the neuro-beneficial effects of luteolin and other flavonoids.

Electronic Supplementary Material

Download File(s)
fshw-14-2-9250035_ESM1.tif (1.2 MB)
fshw-14-2-9250035_ESM2.tif (1.2 MB)
fshw-14-2-9250035_ESM3.tif (1.9 MB)
fshw-14-2-9250035_ESM4.docx (21 KB)
fshw-14-2-9250035_ESM5.docx (18.3 KB)

References

[1]

E. Agathokleous, M. Kitao, E.J. Calabrese, Hormesis: highly generalizable and beyond laboratory, Trends Plant Sci. 25 (2020) 1076-1086. https://doi.org/10.1016/j.tplants.2020.05.006.

[2]

E.J. Calabrese, Hormetic mechanisms, Crit. Rev. Toxicol. 43 (2013) 580-606. https://doi.org/10.3109/10408444.2013.808172.

[3]

H. Van der Woude, G.M. Alink, I.M. Rietjens, The definition of hormesis and its implications for in vitro to in vivo extrapolation and risk assessment, Crit. Rev. Toxicol. 35 (2005) 603-607. https://doi.org/10.1080/10408440500246876.

[4]

K. Wen, X. Fang, J. Yang, et al., Recent research on flavonoids and their biomedical applications, Curr. Med. Chem. 28 (2021) 1042-1066. https://doi.org/10.2174/0929867327666200713184138.

[5]

A.J. Vargas, R. Burd, Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management, Nutr. Rev. 68 (2010) 418-428. https://doi.org/10.1111/j.1753-4887.2010.00301.x.

[6]

R.C. Siow, G.E. Mann, Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis?, Mol. Asp. Med. 31 (2010) 468-477. https://doi.org/10.1016/j.mam.2010.09.003.

[7]

J. Jodynis-Liebert, M. Kujawska, Biphasic dose-response induced by phytochemicals: experimental evidence, J. Clin. Med. 9 (2020) 718. https://doi.org/10.3390/jcm9030718.

[8]

J. Vaya, S. Tamir, The relation between the chemical structure of flavonoids and their estrogen-like activities, Curr. Med. Chem. 11 (2004) 1333-1343. https://doi.org/10.2174/0929867043365251.

[9]

N. Malik, P. Dhiman, E. Sobarzo-Sanchez, Flavonoids and anthranquinones as xanthine oxidase and monoamine oxidase inhibitors: a new approach towards inflammation and oxidative stress, Curr. Top. Med. Chem. 18 (2018) 2154-2164. https://doi.org/10.2174/1568026619666181120143050.

[10]

J.G. Geisler, K. Marosi, J. Halpern, DNP, mitochondrial uncoupling, and neuroprotection: a little dab’ll do ya, Alzheimers. Dement. 13 (2017) 582-591. https://doi.org/10.1016/j.jalz.2016.08.001.

[11]

D.B. Zorov, N.V. Andrianova, V.A. Babenko, et al., Neuroprotective potential of mild uncoupling in mitochondria. pros and cons, Brain Sci. 11 (2021) 1050. https://doi.org/10.3390/brainsci11081050.

[12]

S. Demine, P. Renard, T Arnould, Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases, Cells 8 (2019) 795. https://doi.org/10.3390/cells8080795.

[13]

J. Yun, T. Finkel, Mitohormesis, Cell Metab. 19 (2014) 757-766. https://doi.org/10.1016/j.cmet.2014.01.011.

[14]

M. Stockdale, M.J. Selwyn, Effects of ring substituents on the activity of phenols as inhibitors and uncouplers of mitochondrial respiration, Eur. J. Biochem. 21 (1971) 565-574. https://doi.org/10.1111/j.1432-1033.1971.tb01502.x.

[15]

J.F. Stevens, J.S. Revel, C.S. Maier, Mitochondria-centric review of polyphenol bioactivity in cancer models, Antioxid. Redox Signal. 29 (2018) 1589-1611. https://doi.org/10.1089/ars.2017.7404.

[16]

A. Kicinska, W. Jarmuszkiewicz, Flavonoids and mitochondria: activation of cytoprotective pathways?, Molecules 25 (2020) 3060. https://doi.org/10.3390/molecules25133060.

[17]

D.J. Dorta, A.A. Pigoso, F.E. Mingatto, et al., The interaction of flavonoids with mitochondria: effects on energetic processes, Chem. Biol. Interact. 152 (2005) 67-78. https://doi.org/10.1016/j.cbi.2005.02.004.

[18]

M.S. Attene-Ramos, R. Huang, S. Sakamuru, et al., Systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening, Chem. Res. Toxicol. 26 (2013) 1323-1332. https://doi.org/10.1021/tx4001754.

[19]

M.S. Attene-Ramos, R. Huang, S. Michael, et al., Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential, Environ. Health Perspect. 123 (2015) 49-56. https://doi.org/10.1289/ehp.1408642.

[20]

A.V. Zholobenko, A. Mouithys-Mickalad, Z. Dostal, et al., On the causes and consequences of the uncoupler-like effects of quercetin and dehydrosilybin in H9c2 cells, PLoS One 12 (2017) e0185691. https://doi.org/10.1371/journal.pone.0185691.

[21]

M. Gasparrini, F. Giampieri, J. Alvarez Suarez, et al., AMPK as a new attractive therapeutic target for disease prevention: the role of dietary compounds AMPK and disease prevention, Curr. Drug Targets 17 (2016) 865-889. https://doi.org/10.2174/1573399811666150615150235.

[22]

M.M. Gravandi, S. Fakhri, S.N. Zarneshan, et al., Flavonoids modulate AMPK/PGC-1alpha and interconnected pathways toward potential neuroprotective activities, Metab. Brain Dis. 36 (2021) 1501-1521. https://doi.org/10.1007/s11011-021-00750-3.

[23]

J. Martel, D.M. Ojcius, Y.F. Ko, et al., Hormetic effects of phytochemicals on health and longevity, Trends Endocrinol. Metab. 30 (2019) 335-346. https://doi.org/10.1016/j.tem.2019.04.001.

[24]

I. Cho, H.O. Song, J.H. Cho, Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling, Food Sci. Nutr. 8 (2020) 6633-6642. https://doi.org/10.1002/fsn3.1956.

[25]

A.X. Gao, T.C.X. Xia, M.S.H. Mak, et al., Luteolin stimulates the NGF-induced neurite outgrowth in cultured PC12 cells through binding with NGF and potentiating its receptor signaling, Food Funct. 12 (2021) 11515-11525. https://doi.org/10.1039/d1fo01096d.

[26]

Z. Ashaari, M.A. Hadjzadeh, G. Hassanzadeh, et al., The flavone luteolin improves central nervous system disorders by different mechanisms: a review, J. Mol. Neurosci. 65 (2018) 491-506. https://doi.org/10.1007/s12031-018-1094-2.

[27]

E.J. Calabrese, E. Agathokleous, R. Kapoor, et al., Luteolin and hormesis, Mech. Ageing Dev. 199 (2021) 111559. https://doi.org/10.1016/j.mad.2021.111559.

[28]

M.P. Mattson, A. Cheng, Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses, Trends Neurosci. 29 (2006) 632-639. https://doi.org/10.1016/j.tins.2006.09.001.

[29]

V. Calabrese, C. Cornelius, C. Mancuso, et al., Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases, Front. Biosci. 14 (2009) 376-397. https://doi.org/10.2741/3250.

[30]

S.L. Xu, C.W. Bi, R.C. Choi, et al., Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor, Evid.-based Complement Altern. Med. 2013 (2013a) 127075. https://doi.org/10.1155/2013/127075.

[31]

S.L. Xu, K.Y. Zhu, C.W. Bi, et al., Flavonoids induce the expression of synaptic proteins, synaptotagmin, and postsynaptic density protein-95 in cultured rat cortical neuron, Planta Med. 79 (2013b) 1710-1714. https://doi.org/10.1055/s-0033-1351023.

[32]

Y. Xia, Q. Wu, S. Mak, et al., Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells, FASEB J. 36 (2022) e22189. https://doi.org/10.1096/fj.202101302RR.

[33]

G. Hostetler, K. Riedl, H. Cardenas, et al., Flavone deglycosylation increases their anti-inflammatory activity and absorption, Mol. Nutr. Food Res. 56 (2012) 558-569. https://doi.org/10.1002/mnfr.201100596.

[34]

Y. Taheri, J. Sharifi-Rad, G. Antika, et al., Paving luteolin therapeutic potentialities and agro-food-pharma applications: emphasis on in vivo pharmacological effects and bioavailability traits, Oxidative Med. Cell Longev. 2021 (2021) 1987588. https://doi.org/10.1155/2021/1987588.

[35]

R. Shimazu, M. Anada, A. Miyaguchi, et al., Evaluation of blood-brain barrier permeability of polyphenols, anthocyanins, and their metabolites, J. Agric. Food Chem. 69 (2021) 11676-11686. https://doi.org/10.1021/acs.jafc.1c02898.

[36]

C.W. Lin, M.J. Wu, I.Y. Liu, et al., Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression, J. Agric. Food Chem. 58 (2010) 4477-4486. https://doi.org/10.1021/jf904061x.

[37]

F. Moosavi, R. Hosseini, L. Saso, et al., Modulation of neurotrophic signaling pathways by polyphenols, Drug Des. Dev. Ther. 10 (2016) 23-42. https://doi.org/10.2147/DDDT.S96936.

[38]

A.P. Wasilewska-Sampaio, M.S. Silveira, O. Holub, et al., Neuritogenesis and neuronal differentiation promoted by 2,4-dinitrophenol, a novel anti-amyloidogenic compound, FASEB J. 19 (2005) 1627-1636. https://doi.org/10.1096/fj.05-3812com.

[39]

E. Jones, N. Gaytan, I. Garcia, et al., A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1, Cell Mol. Life Sci. 74 (2017) 1347-1363. https://doi.org/10.1007/s00018-016-2421-9.

[40]

L. Zhang, L. Dai, D. Li, Mitophagy in neurological disorders, J. Neuroinflamm. 18 (2021) 297. https://doi.org/10.1186/s12974-021-02334-5.

[41]

M. Ashrafizadeh, Z. Ahmadi, T. Farkhondeh, et al., Autophagy regulation using luteolin: new insight into its anti-tumor activity, Cancer Cell Int. 20 (2020) 537. https://doi.org/10.1186/s12935-020-01634-9.

[42]

H. Xu, W. Yu, S. Sun, et al., Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy, Front. Physiol. 11 (2020) 113. https://doi.org/10.3389/fphys.2020.00113.

[43]

D.P.W. Jayatunga, E. Hone, W. Fernando, et al., Mitoprotective effects of a synergistic nutraceutical combination: basis for a prevention strategy against Alzheimer’s disease, Front. Aging Neurosci. 13 (2021) 781468. https://doi.org/10.3389/fnagi.2021.781468.

[44]

F. Martorana, D. Gaglio, M.R. Bianco, et al., Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling, Cell Death Dis. 9 (2018) 391. https://doi.org/10.1038/s41419-018-0429-9.

[45]

J.P. Castro, K. Wardelmann, T. Grune, et al., Mitochondrial chaperones in the brain: safeguarding brain health and metabolism?, Front. Endocrinol. 9 (2018) 196. https://doi.org/10.3389/fendo.2018.00196.

[46]

A. El Omri, J. Han, K. Kawada, et al., Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways, Brain Res. 1437 (2012) 16-25. https://doi.org/10.1016/j.brainres.2011.12.019.

[47]

P.Y. Chen, M.J. Wu, H.Y. Chang, et al., Up-regulation of miR-34a expression in response to the luteolin-induced neurite outgrowth of PC12 cells, J. Agric. Food Chem. 63 (2015) 4148-4159. https://doi.org/10.1021/acs.jafc.5b01005.

[48]

Y. Bandaruk, R. Mukai, J. Terao, Cellular uptake of quercetin and luteolin and their effects on monoamine oxidase-a in human neuroblastoma SH-SY5Y cells, Toxicol. Rep. 1 (2014) 639-649. https://doi.org/10.1016/j.toxrep.2014.08.016.

[49]

J.P. Spencer, M.M. Abd-el-Mohsen, C. Rice-Evans, Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity, Arch. Biochem. Biophys. 423 (2004) 148-161. https://doi.org/10.1016/j.abb.2003.11.010.

[50]

J. Xiao, P. Hogger, Stability of dietary polyphenols under the cell culture conditions: avoiding erroneous conclusions, J. Agric. Food Chem. 63 (2015) 1547-1557. https://doi.org/10.1021/jf505514d.

[51]

R. Franco, G. Navarro, E. Martinez-Pinilla, Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals, Antioxidants 8 (2019) 373. https://doi.org/10.3390/antiox8090373.

[52]

H. Speisky, F. Shahidi, A. Costa de Camargo, et al., Revisiting the oxidation of flavonoids: loss, conservation or enhancement of their antioxidant properties, Antioxidants 11 (2022) 133. https://doi.org/10.3390/antiox11010133.

[53]

J.J. Wu, Y. Cui, Y.S. Yang, et al., Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract, Phytother. Res. 27 (2013) 564-571. https://doi.org/10.1002/ptr.4745.

Food Science and Human Wellness
Article number: 9250035
Cite this article:
Gao AX, Xia TC, Guo MS, et al. Luteolin, a common flavone in vegetables, acts as a hormetin possessing neurotrophic function: signaling mediated by inducing mitochondrial stress. Food Science and Human Wellness, 2025, 14(2): 9250035. https://doi.org/10.26599/FSHW.2024.9250035
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return