Many studies have shown that the development of allergic asthma is associated with intestinal microbiota dysbiosis. Based on the gut-lung axis theory, probiotic intervention may be a potential strategy for respiratory diseases. Lacticaseibacillus paracasei K56 was reported to regulate gut microbiota in mice. However, its effect on allergic asthma has not been reported. In this study, we investigated the effect of the K56 on ovalbumin-induced asthma and its possible mechanisms. Our results showed that K56 reduced asthma symptoms and inflammatory cell infiltration in the lung of asthmatic mice. And K56 regulated the differentiation of helper T cells in the lung and intestine. Results from 16S rRNA gene sequencing showed that K56 prophylaxis significantly elevated the richness of Akkermansia and Burkholderia. Meanwhile, K56 abrogated the decrease in the levels of short-chain fatty acids (SCFAs) in the feces. In addition, a rebound in the mRNA expression of the SCFA receptors was observed after K56 prophylaxis. Notably, the regulatory T cell (Treg) frequencies and the FFAR3 levels were positively correlated. These results suggest that K56 could attenuate asthma, possibly by modulating the intestinal microbiota and regulating Treg differentiation through SCFA metabolized. Our study showed that K56 may be used as a probiotic to prevent pulmonary inflammation and dysbiosis of the intestinal microbiota in allergic asthma.
Y. Dong, H. Yan, X. Zhao, et al., Gu-Ben-Fang-Xiao decoction ameliorated murine asthma in remission stage by modulating microbiota-acetate-Tregs axis, Front. Pharmacol. 11 (2020) 549. https://doi.org/10.3389/fphar.2020.00549.
A. Liu, T. Ma, N. Xu, et al., Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome, Microbiol. Spectr. 9 (2021) e0085921. https://doi.org/10.1128/Spectrum.00859-21.
J. Krusche, M. Twardziok, K. Rehbach, et al., TNF-α-induced protein 3 is a key player in childhood asthma development and environment-mediated protection, J. Allergy Clin. Immunol. 144 (2019) 1684-1696. https://doi.org/10.1016/j.jaci.2019.07.029.
M.L. Palumbo, A. Prochnik, M.R. Wald, et al., Chronic stress and glucocorticoid receptor resistance in asthma, Clin. Ther. 42 (2020) 993-1006. https://doi.org/10.1016/j.clinthera.2020.03.002.
P.W. Sullivan, V.H. Ghushchyan, G. Globe, et al., Oral corticosteroid exposure and adverse effects in asthmatic patients, J. Allergy Clin. Immunol. 141 (2018) 110-116. https://doi.org/10.1016/j.jaci.2017.04.009.
W. Barcik, R.C.T. Boutin, M. Sokolowska, et al., The role of lung and gut microbiota in the pathology of asthma, Immunity 52 (2020) 241-255. https://doi.org/10.1016/j.immuni.2020.01.007.
N.W. Lukacs, Y.J. Huang, Microbiota-immune interactions in asthma pathogenesis and phenotype, Curr. Opin. Immunol. 66 (2020) 22-26. https://doi.org/10.1016/j.coi.2020.03.012.
C.G. Alcazar, V.M. Paes, Y. Shao, et al., The association between early-life gut microbiota and childhood respiratory diseases: a systematic review, Lancet Microbe. 3 (2022) e867-e880. https://doi.org/10.1016/s2666-5247(22)00184-7.
S. Rastogi, S. Mohanty, S. Sharma, et al., Possible role of gut microbes and host’s immune response in gut-lung homeostasis, Front. Immunol. 13 (2022) 954339. https://doi.org/10.3389/fimmu.2022.954339.
S. Rastogi, A. Singh, Gut microbiome and human health: exploring how the probiotic genus Lactobacillus modulate immune responses, Front. Pharmacol. 13 (2022) 1042189. https://doi.org/10.3389/fphar.2022.1042189.
T. Du, A. Lei, N. Zhang, et al., The beneficial role of probiotic Lactobacillus in respiratory diseases, Front. Immunol. 13 (2022) 908010. https://doi.org/10.3389/fimmu.2022.908010.
P.Y. Voo, C.T. Wu, H.L. Sun, et al., Effect of combination treatment with Lactobacillus rhamnosus and corticosteroid in reducing airway inflammation in a mouse asthma model, J. Microbiol. Immunol Infect 55 (2022) 766-776. https://doi.org/10.1016/j.jmii.2022.03.006.
B. Cukrowska, J.B. Bierła, M. Zakrzewska, et al., The relationship between the infant gut microbiota and allergy. the role of bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life, Nutrients 12 (2020) 946. https://doi.org/10.3390/nu12040946.
S. Fukuda, H. Toh, K. Hase, et al., Bifidobacteria can protect from enteropathogenic infection through production of acetate, Nature 469 (2011) 543-547. https://doi.org/10.1038/nature09646.
P.M. Smith, M.R. Howitt, N. Panikov, et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science 341 (2013) 569-573. https://doi.org/10.1126/science.1241165.
M. Li, B. van Esch, G.T.M. Wagenaar, et al., Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells, Eur. J. Pharmacol. 831 (2018) 52-59. https://doi.org/10.1016/j.ejphar.2018.05.003.
H. Lu, W. Zhao, W.H. Liu, et al., Safety evaluation of Bifidobacterium lactis BL-99 and Lacticaseibacillus paracasei K56 and ET-22 in vitro and in vivo, Front. Microbiol. 12 (2021) 686541. https://doi.org/10.3389/fmicb.2021.686541.
Z. Miao, H. Zheng, W.H. Liu, et al., Lacticaseibacillus paracasei K56 attenuates high-fat diet-induced obesity by modulating the gut microbiota in mice, Probiotics Antimicrob. Proteins. 15 (2023) 844-855. https://doi.org/10.1007/s12602-022-09911-x.
V. Calcaterra, E. Verduci, M. Ghezzi, et al., Pediatric obesity-related asthma: the role of nutrition and nutrients in prevention and treatment, Nutrients, 13 (2021) 3708. https://doi.org/10.3390/nu13113708.
H.C. Lai, T.L. Lin, T.W. Chen, et al., Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide, Gut 71 (2022) 309-321. https://doi.org/10.1136/gutjnl-2020-322599.
W. Zhang, Q. Li, D. Li, et al., The E3 ligase VHL controls alveolar macrophage function via metabolic-epigenetic regulation, J. Exp. Med. 215 (2018) 3180-3193. https://doi.org/10.1084/jem.20181211.
G. Zhao, M. Nyman, J.A. Jönsson, Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography, Biomed. Chromatogr. 20 (2006) 674-682. https://doi.org/10.1002/bmc.580.
R. Zhao, L. Chu, Y. Wang, et al., Application of packed-fiber solid-phase extraction coupled with GC-MS for the determination of short-chain fatty acids in children’s urine, Clin. Chim. Acta. 468 (2017) 120-125. https://doi.org/10.1016/j.cca.2017.02.016.
A.J. Baatjes, S.G. Smith, R. Watson, et al., T regulatory cell phenotypes in peripheral blood and bronchoalveolar lavage from non-asthmatic and asthmatic subjects, Clin. Exp. Allergy 45 (2015) 1654-1662. https://doi.org/10.1111/cea.12594.
N.W. Palm, M.R. de Zoete, R.A. Flavell, Immune-microbiota interactions in health and disease, Clin. Immunol. 159 (2015) 122-127. https://doi.org/10.1016/j.clim.2015.05.014.
Y. Hong, Z. Chu, J. Kong, et al., IL-17A aggravates asthma-induced intestinal immune injury by promoting neutrophil trafficking, J. Leukoc. Biol. 112 (2022) 425-435. https://doi.org/10.1002/jlb.3ma0622-426rr.
Y. Yao, X. Miao, L. Wang, et al., Methane alleviates lung injury through the IL-10 pathway by increasing T regulatory cells in a mouse asthma model, J. Immunol. Res. 2022 (2022) 6008376. https://doi.org/10.1155/2022/6008376.
S. Wu, R. Yang, G. Wang, Anti-asthmatic effect of pitavastatin through aerosol inhalation is associated with CD4+ CD25+ Foxp3+ T cells in an asthma mouse model, Sci. Rep. 7 (2017) 6084. https://doi.org/10.1038/s41598-017-06476-6.
J. Wang, S. Gao, J. Zhang, et al., Interleukin-22 attenuates allergic airway inflammation in ovalbumin-induced asthma mouse model, BMC Pulm. Med. 21 (2021) 385. https://doi.org/10.1186/s12890-021-01698-x.
M. Green, K. Arora, S. Prakash, Microbial medicine: prebiotic and probiotic functional foods to target obesity and metabolic syndrome, Int. J. Mol. Sci. 21 (2020) 2890. https://doi.org/10.3390/ijms21082890.
C.M. Chen, S.H. Cheng, Y.H. Chen, et al., Supplementation with heat-inactivated Lacticaseibacillus paracasei K47 ameliorates allergic asthma in mice by regulating the Th1/Th2 balance, Benef. Microbes. 13 (2022) 73-82. https://doi.org/10.3920/bm2021.0035.
H.K. Reddel, M.L. Levy, The GINA asthma strategy report: what’s new for primary care?, NPJ Prim. Care Respir. Med. 25 (2015) 15050. https://doi.org/10.1038/npjpcrm.2015.50.
Q. Guan, B. Yang, R.J. Warrington, et al., Myeloid-derived suppressor cells: roles and relations with Th2, Th17, and Treg cells in asthma, Allergy 74 (2019) 2233-2237. https://doi.org/10.1111/all.13829.
S.T. Zhao, C.Z. Wang, Regulatory T cells and asthma, J. Zhejiang Univ. Sci. B 19 (2018) 663-673. https://doi.org/10.1631/jzus.B1700346.
B. Zhang, M. Zeng, Q. Zhang, et al., Ephedrae Herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance, Mol. Immunol. 152 (2022) 14-26. https://doi.org/10.1016/j.molimm.2022.09.009.
L. Chiu, T. Bazin, M.E. Truchetet, et al., Protective microbiota: from localized to long-reaching co-immunity, Front. Immunol. 8 (2017) 1678. https://doi.org/10.3389/fimmu.2017.01678.
J.K. Nicholson, I.D. Wilson, Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism, Nat. Rev. Drug Discov. 2 (2003) 668-676. https://doi.org/10.1038/nrd1157.
M.H. Grayson, L.E. Camarda, S.A. Hussain, et al., Intestinal microbiota disruption reduces regulatory T cells and increases respiratory viral infection mortality through increased IFNγ production, Front. Immunol. 9 (2018) 1587. https://doi.org/10.3389/fimmu.2018.01587.
X. Nan, W. Zhao, W.H. Liu, et al., Bifidobacterium animalis subsp. lactis BL-99 ameliorates colitis-related lung injury in mice by modulating short-chain fatty acid production and inflammatory monocytes/macrophages, Food Funct. 14 (2023) 1099-1112. https://doi.org/10.1039/d2fo03374g.
C.C. Chen, K.J. Chen, M.S. Kong, et al., Alterations in the gut microbiotas of children with food sensitization in early life, Pediatr. Allergy Immunol. 27 (2016) 254-262. https://doi.org/10.1111/pai.12522.
C. Huang, Y. Yu, W. Du, et al., Insights into gut microbiome and its functional pathways in asthma patients through high-throughput sequencing, Future Microbiol. 16 (2021) 421-438. https://doi.org/10.2217/fmb-2020-0101.
H.F. Kao, Y.C. Wang, H.Y. Tseng, et al., Goat milk consumption enhances innate and adaptive immunities and alleviates allergen-induced airway inflammation in offspring mice, Front. Immunol. 11 (2020) 184. https://doi.org/10.3389/fimmu.2020.00184.
P.D. Cani and W.M. de Vos, Next-generation beneficial microbes: the case of Akkermansia muciniphila, Front. Microbiol. 8 (2017) 1765. https://doi.org/10.3389/fmicb.2017.01765.
M. Derrien, C. Belzer, W.M. de Vos, Akkermansia muciniphila and its role in regulating host functions, Microb. Pathog. 106 (2017) 171-181. https://doi.org/10.1016/j.micpath.2016.02.005.
M. Demirci, H.B. Tokman, H.K. Uysal, et al., Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma, Allergol. Immunopathol. (Madr) 47 (2019) 365-371. https://doi.org/10.1016/j.aller.2018.12.009.
H. Cheng, L. Wang, B. Yang, et al., Cutting edge: inhibition of glycogen synthase kinase 3 activity induces the generation and enhanced suppressive function of human IL-10+ FOXP3+-induced regulatory T cells, J. Immunol. 205 (2020) 1497-1502. https://doi.org/10.4049/jimmunol.2000136.
W. Ratajczak, A. Rył, A. Mizerski, et al., Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs), Acta Biochim. Pol. 66 (2019) 1-12. https://doi.org/10.18388/abp.2018_2648.
V. Sencio, A. Barthelemy, L.P. Tavares, et al., Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production, Cell Rep. 30 (2020) 2934-2947. https://doi.org/10.1016/j.celrep.2020.02.013.
A. Trompette, E.S. Gollwitzer, K. Yadava, et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis, Nat. Med. 20 (2014) 159-166. https://doi.org/10.1038/nm.3444.
J.Y. Yoo, M. Groer, S.V.O. Dutra, et al., Gut microbiota and immune system interactions, Microorganisms. 8 (2020) 1587. https://doi.org/10.3390/microorganisms8101587.
S. Ashique, G. de Rubis, E. Sirohi, et al., Short chain fatty acids: fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases, Chem. Biol. Interact. 368 (2022) 110231. https://doi.org/10.1016/j.cbi.2022.110231.
S. Steinmeyer, K. Lee, A. Jayaraman, et al., Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link, Curr. Allergy Asthma Rep. 15 (2015) 24. https://doi.org/10.1007/s11882-015-0524-2.
M.G. Rooks, W.S. Garrett, Gut microbiota, metabolites and host immunity, Nat. Rev. Immunol. 16 (2016) 341-352. https://doi.org/10.1038/nri.2016.42.
F. Indrio, S. Martini, R. Francavilla, et al., Epigenetic matters: the link between early nutrition, microbiome, and long-term health development, Front. Pediatr. 5 (2017) 178. https://doi.org/10.3389/fped.2017.00178.
I. Kimura, A. Ichimura, R. Ohue-Kitano, et al., Free fatty acid receptors in health and disease, Physiol. Rev. 100 (2020) 171-210. https://doi.org/10.1152/physrev.00041.2018.
K. Kotschenreuther, S. Yan, D.M. Kofler, Migration and homeostasis of regulatory T cells in rheumatoid arthritis, Front. Immunol. 13 (2022) 947636. https://doi.org/10.3389/fimmu.2022.947636.
P. Liu, T. Hu, C. Kang, et al., Research advances in the treatment of allergic rhinitis by probiotics, J. Asthma Allergy 15 (2022) 1413-1428. https://doi.org/10.2147/jaa.S382978.