PDF (4.9 MB)
Collect
Submit Manuscript
Article | Open Access

Untargeted metabolomics combined with 16S rRNA sequencing reveals the characteristics of intestinal metabolism and gut microbiota in hazelnut Cor a 14-allergic BALB/c mice

Chen ChenaKaiyu MubQiang XiebWentong Xueb()
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Cor a 14-allergic mice had lower gut microbiota diversity.

• Cor a 14-allergic mice had 238 differential metabolites compared with controls.

• Intestinal L-tryptophan, histamine and N-acetylhistamine were remarkably enhanced.

• L-tryptophan was screened as the potential biomarker for Cor a 14 allergy.

Graphical Abstract

View original image Download original image

Abstract

Cor a 14 is one of the most vital allergens in hazelnuts. However, the features of intestinal metabolites and microbiota associated with Cor a 14-induced allergy remain unclear. In this study, we established a hazelnut Cor a 14-allergic BALB/c mice model, which was distinguished by the dropped temperature and enhanced allergic inflammatory factor levels in serum. Faeces were collected to detect characteristics of the intestinal metabolites by untargeted metabolomics and the gut microbiota by 16S rRNA sequencing. The α- and β-diversity of gut microbiota in Cor a 14-allergic mice differed from the controls with elevated relative abundance of Lactobacillus and reduced relative abundances of Odoribacter, Chloroplast, Alistipes and Lachnospiraceae_NK4A136_group. Untargeted metabolomics results revealed that 238 significantly differential metabolites (111 up-regulated, 127 down-regulated) were identified, of which, L-tryptophan, histamine and N-acetylhistamine were remarkably accumulated and primarily enriched in the enhanced L-tryptophan and histidine metabolism pathways. Spearman correlation analysis suggested that L-tryptophan was positively correlated with allergic indicators and screened as the potential biomarker for Cor a 14 allergy. Collectively, our findings uncovered the characteristics of intestinal metabolites and gut microbiota during Cor a 14 anaphylaxis and provided new potential insights for diagnosis of hazelnut allergy.

Electronic Supplementary Material

Download File(s)
fshw-14-2-9250044_ESM.docx (15 MB)

References

[1]

A. Nowak-Wegrzyn, H. Szajewska, G. Lack, Food allergy and the gut, Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 241-257. https://doi.org/10.1038/nrgastro.2016.187.

[2]

L. Tordesillas, M.C. Berin, H.A. Sampson, Immunology of food allergy, Immunity 47 (2017) 32-50. https://doi.org/10.1016/j.immuni.2017.07.004.

[3]

Q. Xie, W. Xue, IgE-Mediated food allergy: current diagnostic modalities and novel biomarkers with robust potential, Crit. Rev. Food Sci. Nutr. 63 (2023) 10148-10172. https://doi.org/10.1080/10408398.2022.2075312.

[4]

L. Fu, M. Xie, C. Wang, et al., Lactobacillus casei Zhang alleviates shrimp tropomyosin-induced food allergy by switching antibody isotypes through the NF-κB-dependent immune tolerance, Mol. Nutr. Food Res. 64 (2020) 1900496. https://doi.org/10.1002/mnfr.201900496.

[5]

S.H. Sicherer, H.A. Sampson, Food allergy: epidemiology, pathogenesis, diagnosis, and treatment, J. Allergy Clin. Immunol. 133 (2014) 291-307. https://doi.org/10.1016/j.jaci.2013.11.020.

[6]

A. Valcour, J. Lidholm, M.P. Borres, et al., Sensitization profiles to hazelnut allergens across the United States, Ann. Allergy Asthma Immunol. 122 (2019) 111-116. https://doi.org/10.1016/j.anai.2018.09.466.

[7]

J. Costa, I. Mafra, I. Carrapatoso, et al., Hazelnut allergens: molecular characterization, detection, and clinical relevance, Crit. Rev. Food Sci. Nutr. 56 (2016) 2579-2605. https://doi.org/10.1080/10408398.2013.826173.

[8]

S. Pfeifer, M. Bublin, P. Dubiela, et al., Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion, Mol. Nutr. Food Res. 59 (2015) 2077-2086. https://doi.org/10.1002/mnfr.201500071.

[9]

R.A. Rachid, G. Gerber, N. Li, et al., Food allergy in infancy is associated with dysbiosis of the intestinal microbiota, J. Allergy Clin. Immunol. 137 (2016) AB235. https://doi.org/10.1016/j.jaci.2015.12.952.

[10]

A.T. Stefka, T. Feehley, P. Tripathi, et al., Commensal bacteria protect against food allergen sensitization, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 13145-13150. https://doi.org/10.1073/pnas.1412008111.

[11]

J.R. Marchesi, D.H. Adams, F. Fava, et al., The gut microbiota and host health: a new clinical frontier, Gut 65 (2016) 330-339. https://doi.org/10.1136/gutjnl-2015-309990.

[12]

J. Tan, C. McKenzie, P.J. Vuillermin, et al., Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways, Cell Rep. 15 (2016) 2809-2824. http://dx.doi.org/10.1016/j.celrep.2016.05.047.

[13]

W. Jia, G. Xie, W. Jia, Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis, Nat. Rev. Gastro. Hepat. 15 (2018) 111-128. https://doi.org/10.1038/nrgastro.2017.119.

[14]

L. Fu, S. Fu, C. Wang, et al., Yogurt-sourced probiotic bacteria alleviate shrimp tropomyosin-induced allergic mucosal disorders, potentially through microbiota and metabolism modifications, Allergol. Int. 68 (2019) 506-514. https://doi.org/10.1016/j.alit.2019.05.013.

[15]

K.A. Lee-Sarwar, Y. C. Chen, J. Lasky-Su, et al., Early-life fecal metabolomics of food allergy, Allergy 78 (2023) 512-521. https://doi.org/10.1111/all.15602.

[16]

C. Chen, C. Liu, K. Zhang, et al., The role of gut microbiota and its metabolites short-chain fatty acids in food allergy, Food Sci. Hum. Wellness 12 (2023) 702-710. https://doi.org/10.1016/j.fshw.2022.09.003.

[17]

W. Lu, L. Qian, Z. Fang, et al., Probiotic strains alleviated OVA-induced food allergy in mice by regulating the gut microbiota and improving the level of indoleacrylic acid in fecal samples, Food Funct. 13 (2022) 3704-3719. https://doi.org/10.1039/D1FO03520G.

[18]

P. Zheng, K. Zhang, X. Lü, et al., Gut microbiome and metabolomics profiles of allergic and non-allergic childhood asthma, J. Asthma Allergy 15 (2022) 419-435. https://doi.org/10.2147/JAA.S354870.

[19]

N. Birmingham, V. Gangur, S. Samineni, et al., Hazelnut allergy: evidence that hazelnut can directly elicit specific IgE antibody response via activating type 2 cytokines in mice, Int. Arch. Allergy Immunol. 137 (2005) 295-302. https://doi.org/10.1159/000086423.

[20]

N.P. Birmingham, S. Parvataneni, H.M. Hassan, et al., An adjuvant-free mouse model of tree nut allergy using hazelnut as a model tree nut, Int. Arch. Allergy Immunol. 144 (2007) 203-210. https://doi.org/10.1159/000103993.

[21]

M. Hummel, T. Wigger, T. Höper, et al., Simple, rapid, and selective isolation of 2S albumins from allergenic seeds and nuts, J. Agric. Food Chem. 63 (2015) 6035-6040. https://doi.org/10.1021/acs.jafc.5b01634.

[22]

S. Gu, Q. Xie, C. Chen, et al., Gut microbial signatures associated with peanut allergy in a BALB/c mouse model, Foods 11 (2022) 1395. https://doi.org/10.3390/foods11101395

[23]

W. Fu, C. Chen, Q. Xie, et al., Pediococcus acidilactici strain alleviates gluten-induced food allergy and regulates gut microbiota in mice, Front. Cell. Infect. Microbiol. 12 (2022) 845142. https://doi.org/10.3389/fcimb.2022.845142.

[24]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method, Methods 25 (2001) 402-408. https://doi.org/10.1006/meth.2001.1262.

[25]

Q. Liu, Y. Zhang, Z. Shu, et al., Sulfated oligosaccharide of gracilaria lemaneiformis protect against food allergic response in mice by up-regulating immunosuppression, Carbohydr. Polym. 230 (2020) 115567. https://doi.org/10.1016/j.carbpol.2019.115567.

[26]

S. Gu, D. Yang, C. Liu, et al., The role of probiotics in prevention and treatment of food allergy, Food Sci. Hum. Wellness 12 (2023) 681-690. http://doi.org/10.1016/j.fshw.2022.09.001.

[27]

E. Eller, C.G. Mortz, C. Bindslev-Jensen, Cor a 14 is the superior serological marker for hazelnut allergy in children, independent of concomitant peanut allergy, Allergy 71 (2016) 556-562. https://doi.org/10.1111/all.12820.

[28]

L.J.N. Masthoff, L. Mattsson, L. Zuidmeer-Jongejan, et al., Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults, J. Allergy Clin. Immunol. 132 (2013) 393-399. https://doi.org/10.1016/j.jaci.2013.02.024.

[29]

K. Pratap, A.C.P. Taki, E.B. Johnston, et al., A comprehensive review on natural bioactive compounds and probiotics as potential therapeutics in food allergy treatment, Front. Immunol. 11 (2020) 996. https://doi.org/10.3389/fimmu.2020.00996

[30]

M.B. Azad, T. Konya, D.S. Guttman, et al., Infant gut microbiota and food sensitization: associations in the first year of life, Clin. Exp. Allergy 45 (2015) 632-643. https://doi.org/10.1111/cea.12487.

[31]

J. Shi, Y. Wang, L. Cheng, et al., Gut microbiome modulation by probiotics, prebiotics, synbiotics and postbiotics: a novel strategy in food allergy prevention and treatment, Crit. Rev. Food Sci. Nutr. (2022) 1-17. https://doi.org/10.1080/10408398.2022.2160962.

[32]

P. Dong, J.J. Feng, D.Y. Yan, et al., Early-life gut microbiome and cow’s milk allergy-a prospective case-control 6-month follow-up study, Saudi J. Biol. Sci. 25 (2018) 875-880. https://doi.org/10.1016/j.sjbs.2017.11.051.

[33]

W. Jing, Q. Liu, W. Wang, Bifidobacterium bifidum TMC3115 ameliorates milk protein allergy in by affecting gut microbiota: a randomized double-blind control trial, J. Food Biochem. 44 (2020) e13489. https://doi.org/10.1111/jfbc.13489.

[34]

R. Bao, L.A. Hesser, Z. He, et al., Fecal microbiome and metabolome differ in healthy and food-allergic twins, J. Clin. Invest. 131 (2021) e141935. https://doi.org/10.1172/JCI141935.

[35]

A. Kourosh, R.A. Luna, M. Balderas, et al., Fecal microbiome signatures are different in food-allergic children compared to siblings and healthy children, Pediatr. Allergy Immunol. 29 (2018) 545-554. https://doi.org/10.1111/pai.12904.

[36]
R. Raja, S. Hemaiswarya, I.S. Carvalho, et al., Therapeutic applications of cyanobacteria with emphasis on their economics, in: N.K. Sharma, A.K. Rai, L.J. Stal (Eds.), Cyanobacterial Products, John Wiley & Sons Inc., New York, 2014, pp. 93-102. https://doi.org/10.1002/9781118402238.ch6.
[37]

C. Zhou, L.L. Chen, R.Q. Lu, et al., Alteration of intestinal microbiota composition in oral sensitized C3H/HeJ mice is associated with changes in dendritic cells and T cells in mesenteric lymph nodes, Front. Immunol. 12 (2021) 631494. https://doi.org/10.3389/fimmu.2021.631494.

[38]

Q. Li, Y. Shen, X. Guo, et al., Betanin dose-dependently ameliorates allergic airway inflammation by attenuating Th2 response and upregulating cAMP-PKA-CREB pathway in asthmatic mice, J. Agric. Food Chem. 70 (2022) 3708-3718. https://doi.org/10.1021/acs.jafc.2c00205.

[39]

L. Huang, Q. Zeng, Y. Zhang, et al., Effects of fucoidans and alginates from Sargassum graminifolium on allergic symptoms and intestinal microbiota in mice with OVA-induced food allergy, Food Funct. 13 (2022) 6702-6715. https://doi.org/10.1039/D2FO00802E.

[40]

J. Li, C. Zou, Y. Liu, Amelioration of ovalbumin-induced food allergy in mice by targeted rectal and colonic delivery of cyanidin-3-O-glucoside, Foods 11 (2022) 1542. https://doi.org/10.3390/foods11111542.

[41]

K. Hiippala, G. Barreto, C. Burrello, et al., Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro, Front. Microbiol. 11 (2020) 575455. https://doi.org/10.3389/fmicb.2020.575455.

[42]

M. Gołębiewski, E. Łoś-Rycharska, M. Sikora, et al., Mother’s milk microbiome shaping fecal and skin microbiota in infants with food allergy and atopic dermatitis: a pilot analysis, Nutrients 13 (2021) 3600. https://doi.org/10.3390/nu13103600.

[43]

A.N. Shkoporov, A.V. Chaplin, E.V. Khokhlova, et al., Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces, Int. J. Syst. Evol. Microbiol. 65 (2015) 4580-4588. https://doi.org/10.1099/ijsem.0.000617.

[44]

B.J. Parker, P.A. Wearsch, A.C.M. Veloo, et al., The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health, Front. Immunol. 11 (2020) 00906. https://doi.org/10.3389/fimmu.2020.00906.

[45]

P. Liu, M. Zhang, T. Liu, et al., Avenanthramide improves colonic damage induced by food allergies in mice through altering gut microbiota and regulating Hsp70-NF-κB signaling, Nutrients 15 (2023) 992. https://doi.org/10.3390/nu15040992.

[46]

W. Yang, T. Yu, X. Huang, et al., Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity, Nat. Commun. 11 (2020) 4457. https://doi.org/10.1038/s41467-020-18262-6.

[47]

B. Cukrowska, A. Ceregra, E. Maciorkowska, et al., The effectiveness of probiotic Lactobacillus rhamnosus and Lactobacillus casei strains in children with atopic dermatitis and cow’s milk protein allergy: a multicenter, randomized, double blind, placebo controlled study, Nutrients 13 (2021) 1169. https://doi.org/10.3390/nu13041169.

[48]

K.E. Hyung, B.S. Moon, B. Kim, et al., Lactobacillus plantarum isolated from kimchi suppress food allergy by modulating cytokine production and mast cells activation, J. Funct. Food 29 (2017) 60-68. https://doi.org/10.1016/j.jff.2016.12.016.

[49]

Z. Ling, Z. Li, X. Liu, et al., Altered fecal microbiota composition associated with food allergy in infants, Appl. Environ. Microbiol. 80 (2014) 2546-2554. https://doi.org/10.1128/AEM.00003-14.

[50]

C.C. Chen, K.J. Chen, M.S. Kong, et al., Alterations in the gut microbiotas of children with food sensitization in early life, Pediatr. Allergy Immunol. 27 (2016) 254-262. https://doi.org/10.1111/pai.12522.

[51]

J. Xu, Y. Ye, J. Ji, et al., Untargeted metabolomic profiling reveals changes in gut microbiota and mechanisms of its regulation of allergy in OVA-sensitive BALB/c mice, J. Agric. Food Chem. 70 (2022) 3344-3356. https://doi.org/10.1021/acs.jafc.1c07482.

[52]

J.M. Gostner, K. Becker, H. Kofler, et al., Tryptophan metabolism in allergic disorders, Int. Arch. Allergy Immunol. 169 (2016) 203-215. https://doi.org/10.1159/000445500.

[53]

J. M. Gostner, S. Geisler, M. Stonig, et al., Tryptophan metabolism and related pathways in psychoneuroimmunology: the impact of nutrition and lifestyle, Neuropsychobiology 79 (2020) 89-99. https://doi.org/10.1159/000496293.

[54]

X. Yan, J. Yan, Q. Xiang, et al., Fructooligosaccharides protect against OVA-induced food allergy in mice by regulating the Th17/Treg cell balance using tryptophan metabolites, Food Funct. 12 (2021) 3191-3205. https://doi.org/10.1039/D0FO03371E.

[55]

C. Kositz, K. Schroecksnadel, G. Grander, et al., Serum tryptophan concentration in patients predicts outcome of specific immunotherapy with pollen extracts, Int. Arch. Allergy Immunol. 147 (2008) 35-40. https://doi.org/10.1159/000128584.

[56]

G. Ciprandi, M. de Amici, M. Tosca, et al., Tryptophan metabolism in allergic rhinitis: the effect of pollen allergen exposure, Hum. Immunol. 71 (2010) 911-915. https://doi.org/10.1016/j.humimm.2010.05.017.

[57]

J.J. Lin, D.X. Sun-Waterhouse, C. Cui, The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism, Crit. Rev. Food Sci. Nutr. 62 (2022) 8793-8811. https://doi.org/10.1080/10408398.2021.1934813.

[58]

E. Crestani, H. Harb, L.M. Charbonnier, et al., Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma, J. Allergy Clin. Immunol. 145 (2020) 897-906. https://doi.org/10.1016/j.jaci.2019.10.014.

[59]

K.F. van der Sluijs, M.A. van de Pol, W. Kulik, et al., Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design, Thorax 68 (2013) 1122-1130. https://doi.org/10.1136/thoraxjnl-2013-203728.

[60]

S. Smolinska, M. Jutel, R. Crameri, et al., Histamine and gut mucosal immune regulation, Allergy 69 (2014) 273-281. https://doi.org/10.1111/all.12330.

[61]

K. Lee-Sarwar, R.S. Kelly, J. Lasky-Su, et al., Intestinal microbial-derived sphingolipids are inversely associated with childhood food allergy, J. Allergy Clin. Immunol. 142 (2018) 335-338. https://doi.org/10.1016/j.jaci.2018.04.016.

[62]
S.Z. Chen, G.R. Chen, S. Shu, et al., Metabolomics analysis of baicalin on ovalbumin-sensitized allergic rhinitis rats, R. Soc. Open Sci. 6 (2019) 181081. https://doi.org/181081.10.1098/rsos.181081.
[63]

P.B. Bijlsma, B. Backhaus, M. Weidenhiller, et al., Food allergy diagnosis by detection of antigen-induced electrophysiological changes and histamine release in human intestinal biopsies during mucosa-oxygenation, Inflamm. Res. 53 (2004) S29- S30. https://doi.org/10.1007/s00011-003-0313-6.

[64]

K.R. Chalcraft, J. Kong, S. Waserman, et al., Comprehensive metabolomic analysis of peanut-induced anaphylaxis in a murine model, Metabolomics 10 (2014) 452-460. https://doi.org/10.1007/s11306-013-0589-7.

[65]

C.Y. Chiu, M.L. Cheng, M.H. Chiang, et al., Metabolomic analysis reveals distinct profiles in the plasma and urine associated with IgE reactions in childhood asthma, J. Clin. Med. 9 (2020) 887. https://doi.org/10.3390/jcm9030887.

[66]

W.H. Hsu, L.J. Lin, C.K. Lu, et al., Effect of You-Gui-Wan on house dust mite-induced mouse allergic asthma via regulating amino acid metabolic disorder and gut dysbiosis, Biomolecules 11 (2021) 812. https://doi.org/10.3390/biom11060812.

[67]

K. Wang, L. Wang, G. Zhao, et al., Mechanistic study of salidroside on ovalbumin-induced asthmatic model mice based on untargeted metabolomics analysis, Food Funct. 14 (2023) 413-426. https://doi.org/10.1039/D2FO02225G.

[68]

S. Xie, H. Zhang, Z. Xie, et al., Identification of novel biomarkers for evaluating disease severity in house-dust-mite-induced allergic rhinitis by serum metabolomics, Dis. Markers. 2021 (2021) 5558458. https://doi.org/10.1155/2021/5558458.

[69]

H.T.L. Phan, Y.R. Nam, H.J. Kim, et al., In-vitro and in-vivo anti-allergic effects of magnolol on allergic rhinitis via inhibition of ORAI1 and ANO1 channels, J. Ethnopharmacol. 289 (2022) 115061. https://doi.org/10.1016/j.jep.2022.115061.

[70]

T. Feehley, C.H. Plunkett, R. Bao, et al., Healthy infants harbor intestinal bacteria that protect against food allergy, Nat. Med. 25 (2019) 448-453. https://doi.org/10.1038/s41591-018-0324-z.

Food Science and Human Wellness
Article number: 9250044
Cite this article:
Chen C, Mu K, Xie Q, et al. Untargeted metabolomics combined with 16S rRNA sequencing reveals the characteristics of intestinal metabolism and gut microbiota in hazelnut Cor a 14-allergic BALB/c mice. Food Science and Human Wellness, 2025, 14(2): 9250044. https://doi.org/10.26599/FSHW.2024.9250044
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return