PDF (3 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Article | Open Access

Sea cucumber derived sulfated sterols alter glucose metabolism by promoting gluconeogenesis and reducing glycogenesis in healthy mice

Shanyun YuaTeng WangaYingcai ZhaoaXiaoyue LiaChanghu XueaYuming Wanga,b()Tiantian Zhanga()
SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Sea cucumber derived sulfated sterols (SS) alter glucose metabolism in healthy mice.

• SS did not affect the levels of hormones related to glucose metabolism.

• SS significantly decrease the synthesis of liver glycogen and muscle glycogen.

• SS changed blood glucose metabolism in healthy mice by reducing glycogenesis and promoting gluconeogenesis.

Graphical Abstract

View original image Download original image

Abstract

Sea cucumber derived sulfated sterols significantly ameliorated insulin resistance and decreased lipid accumulation compared to plant sterols. Interestingly, our recent study found that intervention with sea cucumber sulfated sterols could significantly increase blood glucose levels of healthy mice in the presence of glucose, while cholesterol sulfate, as one of sulfated sterols, did not have the same effect. However, the exact mechanism of sulfated sterols on glucose metabolism is still unknown. In the present study, we investigated the potential mechanism by which sulfated sterols influenced blood glucose homeostasis in healthy mice. Results showed that intervention with sea cucumber sulfated sterols did not affect the levels of hormones related to glucose metabolism, while led to a significant decrease in the synthesis of liver glycogen and muscle glycogen. Besides, the expression of proteins associated with the promotion of gluconeogenesis dramatically increased in the mice intervened with sea cucumber sulfated sterols. These findings suggested that sea cucumber sulfated sterols might change blood glucose metabolism in healthy mice by reducing glycogenesis and promoting gluconeogenesis.

Electronic Supplementary Material

Download File(s)
fshw-14-2-9250046_ESM.docx (62.7 KB)

References

[1]

X. Li, B. Zeng, L. Wen, et al., Sea cucumber saponins derivatives alleviate hepatic lipid accumulation effectively in fatty acids-induced HepG2 cells and orotic acid-induced rats, Mar. Drugs 20 (2022) 703. http://doi.org/10.3390/md20110703.

[2]

H. Gylling, J. Plat, S. Turley, et al., Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease, Atherosclerosis 232 (2014) 346-360. http://doi.org/10.1016/j.atherosclerosis.2013.11.043.

[3]

T. Zhang, R.J. Liu, M. Chang, et al., Health benefits of 4,4-dimethyl phytosterols: an exploration beyond 4-desmethyl phytosterols, Food Funct. 11 (2020) 93-110. http://doi.org/10.1039/c9fo01205b.

[4]

Q.Y. Zhu, L.Z. Lin, M.M. Zhao, Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: new prospects for sea cucumber polysaccharide based-hypoglycemic functional food, Int. J. Biol. Macromol. 159 (2020) 34-45. http://doi.org/10.1016/j.ijbiomac.2020.05.043.

[5]

N. Srihera, Y. Li, T.T. Zhang, et al., Preparation and characterization of astaxanthin-loaded liposomes stabilized by sea cucumber sulfated sterols instead of cholesterol, J. Oleo. Sci. 71 (2022) 401-410. http://doi.org/10.5650/jos.ess21233.

[6]

Y.C. Zhao, C.H. Xue, T.T. Zhang, et al., Saponins from sea cucumber and their biological activities, J. Agric. Food Chem. 66 (2018) 7222-7237. http://doi.org/10.1021/acs.jafc.8b01770.

[7]

H.J. Zhang, C. Chen, L. Ding, et al., Sea cucumbers-derived sterol sulfate alleviates insulin resistance and inflammation in high-fat-high-fructose diet-induced obese mice, Pharmacol. Res. 160 (2020) 105191. http://doi.org/10.1016/j.phrs.2020.105191.

[8]

B.B. Zeng, L.Y. Zhang, C. Chen, et al., Sea cucumber sterol alleviates the lipid accumulation in high-fat-fructose diet fed mice, J. Agric. Food Chem. 68 (2020) 9707-9717. http://doi.org/10.1021/acs.jafc.0c03794.

[9]

L. Ding, Z.J. Xu, H.H. Shi, et al., Sterol sulfate alleviates atherosclerosis via mediating hepatic cholesterol metabolism in ApoE−/− mice, Food Funct. 12 (2021) 4887-4896. http://doi.org/10.1039/d0fo03266b.

[10]

Y. Li, T. Wang, H.H. Shi, et al., Absorption, pharmacokinetics, tissue distribution, and excretion profiles of sea cucumber-derived sulfated sterols in mice, J. Agric. Food Chem. 70 (2022) 480-487. http://doi.org/10.1021/acs.jafc.1c04218.

[11]

G. Musso, R. Gambino, M. Cassader, Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis, Prog. Lipid Res. 52 (2013) 175-191. http://doi.org/10.1016/j.plipres.2012.11.002.

[12]

K.B.M. Ambia, L.J. Goad, S. Hkycko, et al., The sterols of the sea cucumber Psolus phantapus, Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 86 (1987) 191-192. https://doi.org/10.1016/0305-0491(87)90196-9..

[13]

P. Sauleau, M.L. Bourguet-Kondracki, Novel polyhydroxysterols from the Red Sea marine sponge Lamellodysidea herbacea, Steroids 70 (2005) 954-959. http://doi.org/10.1016/j.steroids.2005.07.004.

[14]

T.N. Makarieva, V.A. Stonik, I.I. Kapustina, et al., Biosynthetic studies of marine lipids. 42. biosynthesis of steroid and triterpenoid metabolites in the sea cucumber Eupentacta fraudatrix, Steroids 58 (1993) 508-517. https://doi.org/10.1016/0039-128x(93)90026-j.

[15]

M. Kates, P. Tremblay, R. Anderson,et al., Identification of the free and conjugated sterol in a non-photosynthetic diatom, Nitzschia alba, as 24-methylene cholesterol, Lipids 13 (1978) 34-41. https://doi.org/10.1007/BF02533364.

[16]

J.Y. Ren, C.L. Hou, C.C. Shi, et al., A polysaccharide isolated and purified from Platycladus orientalis (L.) Franco leaves, characterization, bioactivity and its regulation on macrophage polarization, Carbohydr. Polym. 213 (2019) 276-285. http://doi.org/10.1016/j.carbpol.2019.03.003.

[17]

V.A. Stonik, L.P. Ponomarenko, T.N. Makarieva, et al., Free sterol compositions from the sea cucumbers Pseudostichopus trachus, Holothuria (Microtele) nobilis, Holothuria scabra, Trochostoma orientale and Bathyplotes natans, Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 120 (1998) 337-347. https://doi.org/10.1016/S0305-0491(98)10023-8..

[18]

G. Nuzzo, C. Gallo, G. D’ippolito, et al., UPLC-MS/MS identification of sterol sulfates in marine diatoms, Mar. Drugs 17 (2018) 10. https://doi.org/10.3390/md17010010..

[19]

V.T. Samuel, G.I. Shulman, The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux, J. Clin. Invest. 126 (2016) 12-22. http://doi.org/10.1172/jci77812.

[20]

J. Lee, M.S. Kim, The role of GSK3 in glucose homeostasis and the development of insulin resistance, Diabetes Res. Clin. Pract. 77(Suppl 1) (2007) S49-57. http://doi.org/10.1016/j.diabres.2007.01.033.

[21]

Q.Q. Li, Q.Y. Zhao, J.Y. Zhang, et al., The protein phosphatase 1 complex is a direct target of AKT that links insulin signaling to hepatic glycogen deposition, Cell Rep. 28 (2019) 3406-3422. http://doi.org/10.1016/j.celrep.2019.08.066.

[22]

K. Li, C. Qiu, P. Sun, et al., Ets1-mediated acetylation of FoxO1 is critical for gluconeogenesis regulation during feed-fast cycles, Cell Rep. 26 (2019) 2998-3010. http://doi.org/10.1016/j.celrep.2019.02.035.

[23]

E.A. Richter, M. Hargreaves, Exercise, GLUT4, and skeletal muscle glucose uptake, Physiol. Rev. 93 (2013) 993-1017. http://doi.org/10.1152/physrev.00038.2012.

[24]

J.J. Holst, W. Holland, J. Gromada, et al., Insulin and glucagon: partners for life, Endocrinology 158 (2017) 696-701. http://doi.org/10.1210/en.2016-1748.

[25]

S. Hædersdal, A. Lund, F.K. Knop, et al., The role of glucagon in the pathophysiology and treatment of type 2 diabetes, Mayo Clin. Proc. 93 (2018) 217-239. http://doi.org/10.1016/j.mayocp.2017.12.003.

[26]

G. Jiang, B.B. Zhang, Glucagon and regulation of glucose metabolism, Am. J. Physiol. Endocrinol. Metab. 284 (2003) 671-678. http://doi.org/10.1152/ajpendo.00492.2002.

[27]

C. Bataglini, I. Ramos Mariano, S.C.F. Azevedo, et al., Insulin degludec and glutamine dipeptide modify glucose homeostasis and liver metabolism in diabetic mice undergoing insulin-induced hypoglycemia, J. Appl. Biomed. 19 (2021) 210-219. http://doi.org/10.32725/jab.2021.025.

[28]

L. Agius, Glucokinase and molecular aspects of liver glycogen metabolism, Biochem. J. 414 (2008) 1-18. http://doi.org/10.1042/bj20080595.

[29]

R.M. Esquejo, B. Albuquerque, A. Sher, et al., AMPK activation is sufficient to increase skeletal muscle glucose uptake and glycogen synthesis but is not required for contraction-mediated increases in glucose metabolism, Heliyon. 8 (2022) e11091. http://doi.org/10.1016/j.heliyon.2022.e11091.

[30]

A. Gautier-Stein, G. Mithieux, Intestinal gluconeogenesis: metabolic benefits make sense in the light of evolution, Nat. Rev. Gastroenterol. Hepatol. 20 (2023) 183-194. http://doi.org/10.1038/s41575-022-00707-6.

[31]

S. Payankaulam, A.M. Raicu, D.N. Arnosti, Transcriptional regulation of INSR, the insulin receptor gene, Genes (Basel) 10 (2019) 984. http://doi.org/10.3390/genes10120984.

[32]

W.K. Wang, B. Shi, R.T. Cong, et al., RING-finger E3 ligases regulatory network in PI3K/AKT-mediated glucose metabolism, Cell Death Discov. 8 (2022) 372. http://doi.org/10.1038/s41420-022-01162-7.

[33]

M.A. Hermida, J.K. Dinesh, N.R. Leslie, GSK3 and its interactions with the PI3K/AKT/mTOR signalling network, Adv. Biol. Regul. 65 (2017) 5-15. http://doi.org/10.1016/j.jbior.2017.06.003.

[34]

Z.Y. Cheng, M.F. White, Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models, Antioxid. Redox. Signal 14 (2011) 649-661. http://doi.org/10.1089/ars.2010.3370.

[35]

M.C. Petersen, G.I. Shulman, Mechanisms of insulin action and insulin resistance, Physiol. Rev. 98 (2018) 2133-2223. http://doi.org/10.1152/physrev.00063.2017.

[36]

D. Das, N.U. Afzal, S.B. Wann, et al., A ~24 kDa protein isolated from protein isolates of Hawaijar, popular fermented soy food of North-East India exhibited promising antidiabetic potential via stimulating PI3K/AKT/GLUT4 signaling pathway of muscle glucose metabolism, Int. J. Biol. Macromol. 224 (2023) 1025-1039. http://doi.org/10.1016/j.ijbiomac.2022.10.187.

Food Science and Human Wellness
Article number: 9250046
Cite this article:
Yu S, Wang T, Zhao Y, et al. Sea cucumber derived sulfated sterols alter glucose metabolism by promoting gluconeogenesis and reducing glycogenesis in healthy mice. Food Science and Human Wellness, 2025, 14(2): 9250046. https://doi.org/10.26599/FSHW.2024.9250046
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return