PDF (5.3 MB)
Collect
Submit Manuscript
Article | Open Access

Prevent effects of soybean meal peptides in acute alcoholic liver injury based on gut microbiota and metabolome alteration

Jingbo LiuShengrao LiQi YangSiwen LyuXuanting LiuZhiyang DuXiaomin ShangTing Zhang ()
Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

This study investigated the preventive effects of soybean meal peptides (SPs) and their purification peptides (GTYW) on acute alcoholic liver injury. We combined the gut microbiota, metabolites, liver inflammation, and oxidative stress indicators to explore the prevention mechanism of SPs and GTYW. Results showed that SPs, GTYW effectively improved the hepatic oxidative stress and inflammatory. Additionally, SPs and GTYW reversed the effects of alcohol on the gut microbiota, which were evident in the increased abundance of Alloprevotella, Parasutterella in the GTYW group and norank_f__Muribaculaceae in the SPs group. Non-targeted metabolomic analysis showed that SPs ameliorated metabolic disorders by regulating phenylalanine, tyrosine and tryptophan biosynthesis, while GTYW regulated metabolites through α-linolenic acid metabolism and phenylalanine metabolism. Furthermore, significant correlations were observed between gut microbiota, metabolites and liver indicators. These findings confirmed that SPs and GTYW can prevent acute alcoholic liver injury.

Electronic Supplementary Material

Download File(s)
fshw-14-2-9250049_ESM.docx (658.8 KB)

References

[1]

M. Guo, B.Y. Mao, F.A. Sadiq, et al., Effects of noni fruit and fermented noni juice against acute alcohol induced liver injury in mice, J. Funct. Foods 70 (2020) 103995. https://doi.org/10.1016/j.jff.2020.103995.

[2]

N.A. Osna, T.M. Donohue Jr., K.K. Kharbanda, Alcoholic liver disease: pathogenesis and current management, Alcohol Res. 38 (2017) 147-161.

[3]

M.R. Bhandarkar, A. Khan, Antihepatotoxic effect of Nymphaea stellata Willd., against carbon tetrachloride-induced hepatic damage in albino rats, J. Ethnopharmacol. 91 (2004) 61-64. https://doi.org/10.1016/j.jep.2003.11.020.

[4]

B. Gao, R. Bataller, Alcoholic liver disease: pathogenesis and new therapeutic targets, Gastroenterology 141 (2011) 1572-1585. https://doi.org/10.1053/j.gastro.2011.09.002.

[5]

S. Leclercq, S. Matamoros, P.D. Cani, et al., Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity, Proc. Natl. Acad. Sci. USA 111 (2014) 4485-4493. https://doi.org/10.1073/pnas.1415174111.

[6]

J.H. Jung, S.E. Kim, K.T. Suk, et al., Gut microbiota-modulating agents in alcoholic liver disease: links between host metabolism and gut microbiota, Front. Med. 9 (2022) 913842. https://doi.org/10.3389/fmed.2022.913842.

[7]

L. Guo, Q.J. Guan, W.H. Duan, et al., Dietary goji shapes the gut microbiota to prevent the liver injury induced by acute alcohol intake, Front. Nutr. 9 (2022) 729776. https://doi.org/10.3389/fnut.2022.929776.

[8]

J. Plaza-Diaz, P. Solis-Urra, F. Rodriguez-Rodriguez, et al., The gut barrier, intestinal microbiota, and liver disease: molecular mechanisms and strategies to manage, Int. J. Mol. Sci. 21 (2020) 8351. https://doi.org/10.3390/ijms21218351.

[9]

S.K. Sarin, A. Pande, B. Schnabl, Microbiome as a therapeutic target in alcohol-related liver disease, J. Hepatol. 70 (2019) 260-272. https://doi.org/10.1016/j.jhep.2018.10.019.

[10]

Y. Liu, Y.K. Luo, X.H. Wang, et al., Gut microbiome and metabolome response of Pu-erh tea on metabolism disorder induced by chronic alcohol consumption, J. Agric. Food Chem. 68 (2020) 6615-6627. https://doi.org/10.1021/acs.jafc.0c01947.

[11]

L.A. David, C.F. Maurice, R.N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505 (2014) 559-563. https://doi.org/10.1038/nature12820.

[12]

Z.W. Yi, X.F. Liu, L.H. Liang, et al., Antrodin A from Antrodia camphorata modulates the gut microbiome and liver metabolome in mice exposed to acute alcohol intake, Food Funct. 12 (2021) 2925-2937. https://doi.org/10.1039/d0fo03345f.

[13]

J.B. Liu, Y.J. Li, H. Zhang, et al., Fabrication, characterization and functional attributes of zein-egg white derived peptides (EWDP)-chitosan ternary nanoparticles for encapsulation of curcumin: role of EWDP, Food Chem. 372 (2022) 131266. https://doi.org/10.1016/j.foodchem.2021.131266.

[14]

H.D. Wen, Z.H. Li, Y.C. Li, et al., Aggregation of egg white peptides (EWP) induced by proanthocyanidins: a promising fabrication strategy for EWP emulsion, Food Chem. 400 (2023) 134019. https://doi.org/10.1016/j.foodchem.2022.134019.

[15]

F.G. Pan, Z.A.Z. Cai, H.F. Ge, et al., Transcriptome analysis reveals the hepatoprotective mechanism of soybean meal peptides against alcohol-induced acute liver injury mice, Food Chem. Toxicol. 154 (2021) 112353. https://doi.org/10.1016/j.fct.2021.112353.

[16]

J. Li, R.L. Zhou, Z.Q. Ren, et al., Improvement of protein quality and degradation of allergen in soybean meal fermented by Neurospora crassa, LWT-Food Sci. Technol. 101 (2019) 220-228. https://doi.org/10.1016/j.lwt.2018.10.089.

[17]

K.J. Hong, C.H. Lee, S.W. Kim, Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals, J. Med. Food 7 (2004) 430-435. https://doi.org/10.1089/jmf.2004.7.430.

[18]

D. Das, S. Sarkar, S.B. Wann, et al., Current perspectives on the anti-inflammatory potential of fermented soy foods, Food Res. Int. 152 (2022) 110922. https://doi.org/10.1016/j.foodres.2021.110922.

[19]

W.K. Amakye, C.L. Hou, L.P. Xie, et al., Bioactive anti-aging agents and the identification of new anti-oxidant soybean peptides, Food Biosci. 42 (2021) 101194. https://doi.org/10.1016/j.fbio.2021.101194.

[20]

I.S. Kim, W.S. Yang, C.H. Kim, Beneficial effects of soybean-derived bioactive peptides, Int. J. Mol. Sci. 22 (2021) 8570. https://doi.org/10.3390/ijms22168570.

[21]

K. Watanabe, M. Igarashi, X. Li, et al., Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids, PLoS One 13 (2018) 202083. https://doi.org/10.1371/journal.pone.0202083.

[22]

W.W. Liu, T. Hou, W. Shi, et al., Hepatoprotective effects of selenium-biofortified soybean peptides on liver fibrosis induced by tetrachloromethane, J. Funct. Foods 50 (2018) 183-191. https://doi.org/10.1016/j.jff.2018.09.034.

[23]

H.F. Ge, Z.A.Z. Cai, J.L. Chai, et al., Egg white peptides ameliorate dextran sulfate sodium-induced acute colitis symptoms by inhibiting the production of pro-inflammatory cytokines and modulation of gut microbiota composition, Food Chem. 360 (2021) 129981. https://doi.org/10.1016/j.foodchem.2021.129981.

[24]

L. Liu, Y.J. Lin, S.Z. Lei, et al., Synergistic effects of lotus seed resistant starch and sodium lactate on hypolipidemic function and serum nontargeted metabolites in hyperlipidemic rats, J. Agric. Food Chem. 69 (2021) 14580-14592. https://doi.org/10.1021/acs.jafc.1c05993.

[25]

C.Y. Zhang, Y.B. Zhao, M.L. Yu, et al., Mitochondrial dysfunction and chronic liver disease, Curr. Issues Mol. Biol. 44 (2022) 3156-3165. https://doi.org/10.3390/cimb44070218.

[26]

L. Alpert, J. Hart, The pathology of alcoholic liver disease, Clin. Liver Dis. 20 (2016) 473-489. https://doi.org/10.1016/j.cld.2016.02.006.

[27]

W.H. Jiang, H.K. Zhu, C. Liu, et al., In-depth investigation of the mechanisms of Echinacea purpurea polysaccharide mitigating alcoholic liver injury in mice via gut microbiota informatics and liver metabolomics, Int. J. Biol. Macromol. 209 (2022) 1327-1338. https://doi.org/10.1016/j.ijbiomac.2022.04.131.

[28]

D.Z. Hou, J. Tang, M.L. Huan, et al., Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice, Food Sci. Hum. Wellness 11 (2022) 1259-1272. https://doi.org/10.1016/j.fshw.2022.04.023.

[29]

C. Chatterjee, S. Gleddie, C.W. Xiao, Soybean bioactive peptides and their functional properties, Nutrients 10 (2018) 1211. https://doi.org/10.3390/nu10091211.

[30]

L.R. Wen, H.M. Bi, X.S. Zhou, et al., Structure characterization of soybean peptides and their protective activity against intestinal inflammation, Food Chem. 387 (2022) 132868. https://doi.org/10.1016/j.foodchem.2022.132868.

[31]

B.P. Singh, S. Vij, S. Hati, Functional significance of bioactive peptides derived from soybean, Peptides 54 (2014) 171-179. https://doi.org/10.1016/j.peptides.2014.01.022.

[32]

M.S. Sozio, S. Liangpunsakul, D. Crabb, The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis, Semin. Liver Dis. 30 (2010) 378-390. https://doi.org/10.1055/s-0030-1267538.

[33]

J. Hyun, J. Han, C. Lee, et al., Pathophysiological aspects of alcohol metabolism in the liver, Int. J. Mol. Sci. 22 (2021) 5717. https://doi.org/10.3390/ijms22115717.

[34]

M.Y. Hu, L. Zhang, Z. Ruan, et al., The regulatory effects of citrus peel powder on liver metabolites and gut flora in mice with non-alcoholic fatty liver disease (NAFLD), Foods 10 (2021) 3022. https://doi.org/10.3390/foods10123022.

[35]

J.W. Wang, X.Y. Chen, P.Y. Hu, et al., Effects of Linderae radix extracts on a rat model of alcoholic liver injury, Exp. Ther. Med. 11 (2016) 2185-2192. https://doi.org/10.3892/etm.2016.3244.

[36]

Y.W.S. Liu, Q. Kuang, X.L. Dai, et al., Deficiency in inactive rhomboid protein2 (iRhom2) alleviates alcoholic liver fibrosis by suppressing inflammation and oxidative stress, Int. J. Mol. Sci. 23 (2022) 7701. https://doi.org/10.3390/ijms23147701.

[37]

Y.H. Li, Y. Sun, Y. Zang, et al., GanMeijian ameliorates lipid accumulation and oxidative damage in alcoholic fatty liver disease in Wistar rats, Life Sci. 255 (2020) 117721. https://doi.org/10.1016/j.lfs.2020.117721.

[38]

Y.M. Yang, Y.E. Cho, S. Hwang, Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease, Int. J. Mol. Sci. 23 (2022) 774. https://doi.org/10.3390/ijms23020774.

[39]

G. Addolorato, F.R. Ponziani, T. Dionisi, et al., Gut microbiota compositional and functional fingerprint in patients with alcohol use disorder and alcohol-associated liver disease, Liver Int. 40 (2020) 878-888. https://doi.org/10.1111/liv.14383.

[40]

G. Vassallo, A. Mirijello, A. Ferrulli, et al., Review article: alcohol and gut microbiota-the possible role of gut microbiota modulation in the treatment of alcoholic liver disease, Aliment. Pharmacol. Ther. 41 (2015) 917-927. https://doi.org/10.1111/apt.13164.

[41]

B.J. Park, Y.J. Lee, H.R. Lee, Chronic liver inflammation: clinical implications beyond alcoholic liver disease, World J. Gastroenterol. 20 (2014) 2168-2175. https://doi.org/10.3748/wjg.v20.i9.2168.

[42]

E. Slevin, L. Baiocchi, N. Wu, et al., Kupffer cells inflammation pathways and cell-cell interactions in alcohol-associated liver disease, Am. J. Pathol. 190 (2020) 2185-2193. https://doi.org/10.1016/j.ajpath.2020.08.014.

[43]

X. Yan, X.Y. Ren, X.Y. Liu, et al., Dietary ursolic acid prevents alcohol-induced liver injury via gut-liver axis homeostasis modulation: the key role of microbiome manipulation, J. Agric. Food Chem. 69 (2021) 7074-7083. https://doi.org/10.1021/acs.jafc.1c02362.

[44]

J.J. Fan, Y.S. Wang, Y. You, et al., Fermented ginseng improved alcohol liver injury in association with changes in the gut microbiota of mice, Food Funct. 10 (2019) 5566-5573. https://doi.org/10.1039/c9fo01415b.

[45]

S.Y. Lin, D. Xu, X.X. Du, et al., Protective effects of salidroside against carbon tetrachloride (CCl4)-induced liver injury by initiating mitochondria to resist oxidative stress in mice, Int. J. Mol. Sci. 20 (2019) 3187. https://doi.org/10.3390/ijms20133187.

[46]

M. Deng, S. Zhang, L.H. Dong, et al., Shatianyu (Citrus grandis L. Osbeck) flavonoids and dietary fiber in combination are more effective than individually in alleviating high-fat-diet-induced hyperlipidemia in mice by altering gut microbiota, J. Agric. Food Chem. 70 (2022) 14654-14664. https://doi.org/10.1021/acs.jafc.2c03797.

[47]

P. Konieczka, J. Czerwinski, J. Jankowiak, et al., Effects of partial replacement of soybean meal with rapeseed meal, narrow-leaved lupin, DDGS, and probiotic supplementation, on performance and gut microbiota activity and diversity in broilers, Ann. Anim. Sci. 19 (2019) 1115-1131. https://doi.org/10.2478/aoas-2019-0054.

[48]

Z.Q. Li, J.X. Dong, M. Wang, et al., Resveratrol ameliorates liver fibrosis induced by nonpathogenic Staphylococcus in BALB/c mice through inhibiting its growth, Mol. Med. 28 (2022) 52. https://doi.org/10.1186/s10020-022-00463-y.

[49]

R.K. Hu, W.L. Guo, Z.R. Huang, et al., Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats, J. Funct. Foods 46 (2018) 403-412. https://doi.org/10.1016/j.jff.2018.05.020.

[50]

X.L. Yang, F. He, Y.T. Zhang, et al., Inulin ameliorates alcoholic liver disease via suppressing LPS-TLR4-M axis and modulating gut microbiota in mice, Alcohol. Clin. Exp. Res. 43 (2019) 411-424. https://doi.org/10.1111/acer.13950.

[51]

Y. Dong, P. Qiu, L.S. Zhao, et al., Metabolomics study of the hepatoprotective effect of Phellinus igniarius in chronic ethanol-induced liver injury mice using UPLC-Q/TOF-MS combined with ingenuity pathway analysis, Phytomedicine 74 (2020) 152697. https://doi.org/10.1016/j.phymed.2018.09.232.

[52]

X.J. Gou, S.S. Gao, L. Chen, et al., A metabolomic study on the intervention of traditional chinese medicine qushi huayu decoction on rat model of fatty liver induced by high-fat diet, BioMed Res. Int. 2019 (2019) 1-14. https://doi.org/10.1155/2019/5920485.

[53]

M. Li, S.Y. Cai, J.L. Boyer, Mechanisms of bile acid mediated inflammation in the liver, Mol. Aspects Med. 56 (2017) 45-53. https://doi.org/10.1016/j.mam.2017.06.001.

[54]

X. Gong, Q.S. Zhang, Y.J. Ruan, et al., Chronic alcohol consumption increased bile acid levels in enterohepatic circulation and reduced efficacy of irinotecan, Alcohol Alcohol. 55 (2020) 264-277. https://doi.org/10.1093/alcalc/agaa005.

[55]

T.G. Li, J.Y.L. Chiang, Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease, Hepatobiliary Surg. Nutr. 9 (2020) 152-169. https://doi.org/10.21037/hbsn.2019.09.03.

[56]

X.X. Yang, J.D. Wei, J.K. Mu, et al., Integrated metabolomic profiling for analysis of antilipidemic effects of Polygonatum kingianum extract on dyslipidemia in rats, World J. Gastroenterol. 24 (2018) 5505-5524. https://doi.org/10.3748/wjg.v24.i48.5505.

[57]

Q.Q. Wang, Y.T. Li, L.X. Lü, et al., Identification of a protective Bacteroides strain of alcoholic liver disease and its synergistic effect with pectin, Appl. Microbiol. Biotechnol. 106 (2022) 3735-3749. https://doi.org/10.1007/s00253-022-11946-7.

[58]

D. Ciocan, C.S. Voican, L. Wrzosek, et al., Bile acids and intestinal dysbiosis in alcoholic hepatitis, J. Hepatol. 68 (2018) 961-974. https://doi.org/10.1016/s0168-8278(18)30298-8.

[59]

Q.H. Yuan, F. Xie, W. Huang, et al., The review of alpha-linolenic acid: sources, metabolism, and pharmacology, Phytother. Res. 36 (2022) 164-188. https://doi.org/10.1002/ptr.7295.

[60]

A.T.S. Wyse, T.M. dos Santos, B. Seminotti, et al., Insights from animal models on the pathophysiology of hyperphenylalaninemia: role of mitochondrial dysfunction, oxidative stress and inflammation, Mol. Neurobiol. 58 (2021) 2897-2909. https://doi.org/10.1007/s12035-021-02304-1.

Food Science and Human Wellness
Article number: 9250049
Cite this article:
Liu J, Li S, Yang Q, et al. Prevent effects of soybean meal peptides in acute alcoholic liver injury based on gut microbiota and metabolome alteration. Food Science and Human Wellness, 2025, 14(2): 9250049. https://doi.org/10.26599/FSHW.2024.9250049
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return