PDF (2.5 MB)
Collect
Submit Manuscript
Article | Open Access

Metabolic mechanism of dietary factors and effect of dietary types associated with hyperuricemia: a review

Kaina Qiaoa,b,cXuewei Zhoua,b,cLili Zhanga,b,cWangang ZhangdBaoguo Suna,b,cYuyu Zhanga,b,c()
Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Purine metabolism involved in fructose and alcohol metabolism in human body.

• The change of dietary types is meaningful to reduce the risk of hyperuricemia for ordinary people.

• Dietary factors that promoting, reducing or limiting the occurrence of hyperuricemia need to be considered.

• Precise dietary options and differences in personalized diet should be emphasized for hyperuricemic patients accompanied with diverse metabolic diseases

Abstract

Globally, hyperuricemia is a growing health, social, and economic problem which could cause gout, chronic kidney diseases and other diseases. There are increasing evidences that a sensible diet makes sense to reduce the risk of hyperuricemia. This review aims to explore the metabolic mechanism of dietary factors and effects of dietary types associated with hyperuricemia. Recommendations for dietary modification to prevent hyperuricemia are as following: decreasing intake of animal organs, seafood, sugar-sweetened, and alcohol beverages is essential; choosing water or unsweetened tea and coffee instead of sweetened beverages is beneficial; and increasing intake of vegetables, reduced-fat dairy products, foods containing fiber, micronutrients and unsaturated fatty acids is helpful. In addition, consumption of fruits and legumes in moderation is advantageous, and low-fructose of fruits and low-purine of non-soy beans are recommended. Moreover, personalized diet needs to be emphasized for hyperuricemic patients accompanied with diverse metabolic diseases.

Electronic Supplementary Material

Download File(s)
fshw-14-3-9250054_ESM.docx (29.6 KB)

References

[1]

M. Gliozzi, N. Malara, S. Muscoli, et al., The treatment of hyperuricemia, Int. J. Cardiol. 213 (2016) 23-27. https://doi.org/10.1016/j.ijcard.2015.08.087.

[2]

A. Latourte, J. Dumurgier, C. Paquet, et al., Hyperuricemia, gout, and the brain-an update, Curr. Rheumatol. Rep. 23 (2021) 1-10. https://doi.org/10.1007/s11926-021-01050-6.

[3]

T. Bardin, P. Richette, Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options, BMC Med. 15 (2017) 1-10. https://doi.org/10.1186/s12916-017-0890-9.

[4]
WS/T 560—2017. Dietary guide for hyperuricemia and gout patients. China, 2018.
[5]

M. Zhang, X. Zhu, J. Wu, et al., Prevalence of hyperuricemia among Chinese adults: findings from two nationally representative cross-sectional surveys in 2015–16 and 2018–19, Front. Immunol. 12 (2022) 791983. https://doi.org/10.3389/fimmu.2021.791983.

[6]

L.K. Stamp, N.Dalbeth, Critical appraisal of serum urate targets in the management of gout, Nat. Rev. Rheumatol. 18 (2022) 603–609. https://doi.org/10.1038/s41584-022-00816-1.

[7]

P. Richette, T. Bardin, Gout, Lancet 375 (2010) 318-328. https://doi.org/10.1016/S0140-6736(09)60883-7.

[8]

S.N. Ramasamy, C.S. Korb-Wells, D.R. Kannangara, et al., Allopurinol hypersensitivity: a systematic review of all published cases, 1950–2012, Drug Saf. 36 (2013) 953-980. https://doi.org/10.1007/s40264-013-0084-0.

[9]

V. F. Azevedo, I. A. Kos, A. B. Vargas-Santos, et al., Benzbromarone in the treatment of gout, Adv. Rheumatol. 59 (2019) 37. https://doi.org/10.1186/s42358-019-0080-x.

[10]

Y. Sato, D.I. Feig, A.G. Stack, et al., The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD, Nat. Rev. Nephrol. 15 (2019) 767-775. https://doi.org/10.1038/s41581-019-0174-z.

[11]

J.D. FitzGerald, N. Dalbeth, T. Mikuls, et al., 2020 American College of Rheumatology guideline for the management of gout, Arthritis Care Res. 72 (2020) 744-760. https://doi.org/10.1002/art.41247.

[12]

M. Hui, A. Carr, S. Cameron, et al., The British Society for Rheumatology guideline for the management of gout, Rheumatology 56 (2017) e1-e20. https://doi.org/10.1093/rheumatology/kex156.

[13]

K. Chaudhary, K. Malhotra, J. Sowers, et al., Uric acid-key ingredient in the recipe for cardiorenal metabolic syndrome, Cardiorenal Med. 3 (2013) 208-220. https://doi.org/10.1159/000355405.

[14]

N. Dalbeth, A.L. Gosling, A. Gaffo, et al., Gout, Lancet 397 (2021) 1843-1855. https://doi.org/10.1016/S0140-6736(21)00569-9.

[15]

M. Sakiyama, H. Matsuo, S. Nagamori, et al., Expression of a human NPT1/SLC17A1 missense variant which increases urate export, Nucleos. Nucleot. Nucl. 35 (2016) 536-542. https://doi.org/10.1080/15257770.2016.1149192.

[16]

H.L. Sun, Y.W. Wu, H.G. Bian, et al., Function of uric acid transporters and their inhibitors in hyperuricaemia, Front. Pharmacol. 12 (2021) 667753. https://doi.org/10.3389/fphar.2021.667753.

[17]

P.K. Tan, S. Liu, E. Gunic, et al., Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout, Sci. Rep. 7 (2017) 1-11. https://doi.org/10.1038/s41598-017-00706-7.

[18]

Y.H. Lu, Y.P. Chang, T. Li, et al., Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice, Int. J. Biol. Sci. 16 (2020) 529-542. https://doi.org/10.7150/ijbs.33007.

[19]

J.P. Dewulf, S. Marie, M.C. Nassogne, Disorders of purine biosynthesis metabolism, Mol. Genet. Metab. 136 (2022) 190-198. https://doi.org/10.1016/j.ymgme.2021.12.016.

[20]

E. Kedar, P.A. Simkin, A perspective on diet and gout, Adv. Chronic Kidney Dis. 19 (2012) 392-397. https://doi.org/10.1053/j.ackd.2012.07.011.

[21]

H. Yanai, H. Adachi, M. Hakoshima, et al., Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease, Int. J. Mol. Sci. 22 (2021) 9221. https://doi.org/10.3390/ijms22179221.

[22]

S. Aihemaitijiang, Y. Zhang, L. Zhang, et al., The association between purine-rich food intake and hyperuricemia: a cross-sectional study in Chinese adult residents, Nutrients 12 (2020) 3835. https://doi.org/10.3390/nu12123835.

[23]

R. Villegas, Y.B. Xiang, T. Elasy, et al., Purine-rich foods, protein intake, and the prevalence of hyperuricemia: the Shanghai men’s health study, Nutr. Metab. Cardiovasc. Dis. 22 (2012) 409-416. https://doi.org/10.1016/j.numecd.2010.07.012.

[24]

K. Lowette, L. Roosen, J. Tack, et al., Effects of high-fructose diets on central appetite signaling and cognitive function, Front. Nutr. 4 (2015) 2-5. https://doi.org/10.3389/fnut.2015.00005.

[25]

C. Olofsson, B. Anderstam, A.C. Bragfors-Helin, et al., Effects of acute fructose loading on levels of serum uric acid: a pilot study, Eur. J. Clin. Invest. 49 (2019) e13040. https://doi.org/10.1111/eci.13040.

[26]

C. Jang, S. Hui, W.Lu, et al., The small intestine converts dietary fructose into glucose and organic acids, Cell Metab. 27 (2018) 351-361. https://doi.org/10.1016/j.cmet.2017.12.016.

[27]

V.S. Malik, F.B. Hu, Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us, J. Am. Coll. Cardiol. 66 (2015) 1615-1624. https://doi.org/10.1016/j.jacc.2015.08.025.

[28]

S.R. Taylor, S. Ramsamooj, R.J. Liang, et al., Dietary fructose improves intestinal cell survival and nutrient absorption, Nature 597 (2021) 263-267. https://doi.org/10.1038/s41586-021-03827-2.

[29]

J. Hyun, J. Han, C. Lee, et al., Pathophysiological aspects of alcohol metabolism in the liver, Int. J. Mol. Sci. 22 (2021) 5717. https://doi.org/10.3390/ijms22115717.

[30]

T. Yamamoto, Y. Moriwaki, S. Takahashi, Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid), Clin. Chim. Acta. 356 (2005) 35-57. https://doi.org/10.1016/j.cccn.2005.01.024.

[31]

K.D. Torralba, E. de Jesus, S. Rachabattula, The interplay between diet, urate transporters and the risk for gout and hyperuricemia: current and future directions, Int. J. Rheum. Dis. 15 (2012) 499-506. https://doi.org/10.1111/1756-185X.12010.

[32]

S.L. Yu, C. Lin, Z.T. Jiang, et al., Preventive effect of alkaline drinking water on hyperuricemia in mice, China Preventive Medicine Journal 33 (2021) 772–776. https://doi.org/10.19485/j.cnki.issn2096-5087.2021.08.004.

[33]

C.H. Fang, C.C. Tsai, Y.J. Shyong, et al., Effects of highly oxygenated water in a hyperuricemia rat model, J. Healthc. Eng. 2020 (2020) 1323270. https://doi.org/10.1155/2020/1323270.

[34]

H. Shi, X. Liang, L. Huang, et al., Electrolytic drinking water improves the metabolism of uric acid in the SD rats with hyperuricemia, J. Hygiene Res. 49 (2020) 802-808. https://doi.org/10.19813/j.cnki.weishengyanjiu.2020.05.019.

[35]

M. Granger, P. Eck, Dietary vitamin C in human health, Adv. Food Nutr. Res. 83 (2018) 281-310. https://doi.org/10.1016/bs.afnr.2017.11.006.

[36]

L. Wen, H. Yang, L. Ma, et al., The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy, Mol. Cell. Biochem. 476 (2021) 1377-1386. https://doi.org/10.1007/s11010-020-03997-z.

[37]

F.S. Azzeh, A.H. Al-Hebshi, H.D. Al-Essimii, et al., Vitamin C supplementation and serum uric acid: a reaction to hyperuricemia and gout disease, PharmaNutrition 5 (2017) 47-51. https://doi.org/10.1016/j.phanu.2017.02.002.

[38]

S.P. Juraschek, E.R. Miller Ⅲ, A.C. Gelber, Effect of oral vitamin C supplementation on serum uric acid: a meta-analysis of randomized controlled trials, Arthritis Care Res. 63 (2011) 1295-1306. https://doi.org/10.1002/acr.20519.

[39]

R. Shergill-Bonner, Micronutrients, Paed. Child Health 27 (2017) 357-362. https://doi.org/10.1016/j.paed.2017.04.002.

[40]

J.Y. Hui, J.W. Choi, D.B. Mount, et al., The independent association between parathyroid hormone levels and hyperuricemia: a national population study, Arthritis Res. Ther. 14 (2012) R56. https://doi.org/10.1186/ar3769.

[41]

Y.Y. Zhang, H.B. Qiu, J.W. Tian, Association between vitamin D and hyperuricemia among adults in the United States, Front. Nutr. 7 (2020) 592777. https://doi.org/10.3389/fnut.2020.592777.

[42]

Y. Zhang, H. Qiu, Dietary magnesium intake and hyperuricemia among US adults, Nutrients 10 (2018) 296. https://doi.org/10.3390/nu10030296.

[43]

S.N. Zykova, H.M. Storhaug, I. Toft, et al., Cross-sectional analysis of nutrition and serum uric acid in two Caucasian cohorts: the AusDiab Study and the Tromsø study, Nutr. J. 14 (2015) 1-11. https://doi.org/10.1186/s12937-015-0032-1.

[44]

Y. Zhang, Y. Liu, H. Qiu, Association between dietary zinc intake and hyperuricemia among adults in the United States, Nutrients 10 (2018) 568. https://doi.org/10.3390/nu10050568.

[45]

X. Qin, Y. Li, M. He, et al., Folic acid therapy reduces serum uric acid in hypertensive patients: a substudy of the China Stroke Primary Prevention Trial (CSPPT), Am. J. Clin. Nutr. 105 (2017) 882-889. https://doi.org/10.3945/ajcn.116.143131.

[46]

H. Saito, Y. Toyoda, T. Takada, et al., Omega-3 polyunsaturated fatty acids inhibit the function of human URAT1, a renal urate re-absorber, Nutrients 12 (2020) 1601. https://doi.org/10.3390/nu12061601.

[47]

J. Chen, L. Xu, L. Jiang, et al., Sonneratia apetala seed oil attenuates potassium oxonate/hypoxanthine-induced hyperuricemia and renal injury in mice, Food Funct. 12 (2021) 9416-9431. https://doi.org/10.1039/d1fo01830b.

[48]

X. Lin, Q. Zhou, L. Zhou, et al., Quinoa (Chenopodium quinoa Willd) bran saponins alleviate hyperuricemia and inhibit renal injury by regulating the PI3K/AKT/NFκB signaling pathway and uric acid transport, J. Agric. Food Chem. 71 (2023) 6635-6649. https://doi.org/10.1021/acs.jafc.3c00088.

[49]

A. Mehmood, L. Zhao, C. Wang, et al., Management of hyperuricemia through dietary polyphenols as a natural medicament: a comprehensive review, Crit. Rev. Food Sci. Nutr. 59 (2019) 1433-1455. https://doi.org/10.1080/10408398.2017.1412939.

[50]

L. Yuan, Z. Bao, T. Ma, et al., Hypouricemia effects of corn silk flavonoids in a mouse model of potassium oxonated-induced hyperuricemia, J. Food Biochem. 45 (2021) e13856. https://doi.org/10.1111/jfbc.13856.

[51]

W. Meng, L. Chen, K. Ouyang, et al., Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice, Food Sci. Hun. Wellness 12 (2023) 2440-2450. https://doi.org/10.1016/j.fshw.2023.03.011.

[52]

Y. Li, X. Kang, Q. Li, et al., Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity, Peptides 107 (2018) 45-53. https://doi.org/10.1016/j.peptides.2018.08.001.

[53]

N. Zhang, J. Zhou, L. Zhao, et al., Dietary ferulic acid ameliorates metabolism syndrome-associated hyperuricemia in rats via regulating uric acid synthesis, glycolipid metabolism, and hepatic injury, Front. Nutr. 9 (2022) 946556. https://doi.org/10.3389/fnut.2022.946556.

[54]

L. Zhu, Y. Dong, S. Na, et al., Saponins extracted from Dioscorea collettii rhizomes regulate the expression of urate transporters in chronic hyperuricemia rats, Biomed. Pharmacother. 93 (2017) 88-94. https://doi.org/10.1016/j.biopha.2017.06.022.

[55]

Q. Li, X. Kang, C. Shi, et al., Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides, Food Funct. 9 (2018) 107-116. https://doi.org/10.1039/c7fo01174a.

[56]

A. J. McAfee, E. M. McSorley, G. J. Cuskelly, et al., Red meat consumption: An overview of the risks and benefits, Meat Sci. 84 (2010) 1-13. https://doi.org/10.1016/j.meatsci.2009.08.029.

[57]

N. Abate, M. Chandalia, A.V. Jr Cabo-Chan, et al., The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance, Kidney Int. 65 (2004) 386-392. https://doi.org/10.1111/j.1523-1755.2004.00386.x.

[58]

H.K. Choi, S. Liu, G. Curhan, Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey, Arthritis Rheum. 52 (2005) 283-289. https://doi.org/10.1002/art.20761.

[59]

H. Pan, S. Rong, L. Zou, et al., The contents of purine in common animal foods in China, Acta Nutrimenta Sinica 34 (2012) 74-78. https://doi.org/10.13325/j.cnki.acta.nutr.sin.2012.01.014.

[60]

K. Kaneko, Y. Aoyagi, T. Fukuuchi, et al., Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia, Biol. Pharm. Bull. 37 (2014) 709-721. https://doi.org/10.1248/bpb.b13-00967.

[61]

K. Kaneko, F. Takayanagi, T. Fukuuchi, et al., Determination of total purine and purine base content of 80 food products to aid nutritional therapy for gout and hyperuricemia, Nucleos. Nucleot. Nucl. 39 (2020) 1449-1457. https://doi.org/10.1080/15257770.2020.1748197.

[62]

S. Rong, L. Zou, Y. Zhang, et al., Determination of purine contents in different parts of pork and beef by high performance liquid chromatography, Food Chem. 170 (2015) 303-307. https://doi.org/10.1016/j.foodchem.2014.08.059.

[63]

C. Hou, G. Xiao, W. K. Amakye, et al., Guidelines for purine extraction and determination in foods, Food Frontiers 2 (2021) 557-573. https://doi.org/10.1002/fft2.100.

[64]

X. Qu, J. Sui, N. Mi, et al., Determination of four different purines and their content change in seafood by high-performance liquid chromatography, J. Sci. Food Agric. 97 (2017) 520-525. https://doi.org/10.1002/jsfa.7755.

[65]

M. D. Smith, C. A. Roheim, L. B. Crowder, et al., Sustainability and global seafood, Science 327 (2010) 784-786. https://doi.org/10.1126/science.11853.

[66]

C. Zhang, L. Li, Y. Zhang, et al., Recent advances in fructose intake and risk of hyperuricemia, Biomed. Pharmacother. 131 (2020) 110795. https://doi.org/10.1016/j.biopha.2020.

[67]

V.S. Malik, F.B. Hu, The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases, Nat. Rev. Endocrinol. 18 (2022) 205-218. https://doi.org/10.1038/s41574-021-00627-6.

[68]

J.S. Lee, T.J. Kim, S.K. Hong, et al., Impact of coffee/green tea/soft drink consumption on the risk of hyperuricemia: a cross-sectional study, Int. J. Environ. Res. Public Health. 18 (2021) 7299. https://doi.org/10.3390/ijerph18147299.

[69]

J. H. Siqueira, T. S. S. Pereira, G. Velasquez-Melendez, et al., Sugar-sweetened soft drinks consumption and risk of hyperuricemia: results of the ELSA-Brasil study, Nutr. Metab. Cardiovasc. Dis. 31 (2021) 2004-2013. https://doi.org/10.1016/j.numecd.2021.04.008.

[70]

Y. Cheng, H. Zhang, Y. Zhu, et al., Effects of fructose from apple and honey on serum uric acid in young Chinese: randomized crossover trials, Asia Pac. J. Clin. Nutr. 31 (2022) 87-96. https://doi.org/10.6133/apjcn.202203_31(1).0010.

[71]
GB/T 17204-2021: Terminology and classification of alcoholic beverages. China. 2022.
[72]

K. Kaneko, T. Yamanobe, S. Fujimori, Determination of purine contents of alcoholic beverages using high performance liquid chromatography, Biomed. Chromatogr. 23 (2009) 858–864. https://doi.org/10.1002/bmc.1197.

[73]

G.G. Teng, C.S. Tan, A. Santosa, et al., Serum urate levels and consumption of common beverages and alcohol among Chinese in Singapore, Arthritis Care Res. 65 (2013) 1432-1440. https://doi.org/10.1002/acr.21999.

[74]

B. Nieradko-Iwanicka, The role of alcohol consumption in pathogenesis of gout, Crit. Rev. Food Sci. Nutr. 62 (2022) 7129-7137. https://doi.org/10.1080/10408398.2021.1911928.

[75]

H.K. Choi, K. Atkinson, E.W. Karlson, et al., Alcohol intake and risk of incident gout in men: a prospective study, Lancet 363 (2004) 1277-1281. https://doi.org/10.1016/S0140-6736(04)16000-5.

[76]

T. Makinouchi, K. Sakata, M. Oishi, et al., Benchmark dose of alcohol consumption for development of hyperuricemia in Japanese male workers: an 8-year cohort study, Alcohol 56 (2016) 9-14. https://doi.org/10.1016/j.alcohol.2016.08.002.

[77]

H. He, L. Pan, X. Ren, et al., Joint effect of beer, spirits intake, and excess adiposity on hyperuricemia among Chinese male adults: evidence from the China National Health Survey, Front. Nutr. 9 (2022) 806751. https://doi.org/10.3389/fnut.2022.806751.

[78]

Y. Okada, S. Uehara, M. Shibata, et al., Habitual alcohol intake modifies relationship of uric acid to incident chronic kidney disease, Am. J. Nephrol. 50 (2019) 55-62. https://doi.org/10.1159/000500707.

[79]

M. Wang, X. Jiang, W. Wu, et al., A meta-analysis of alcohol consumption and the risk of gout, Clin. Rheumatol. 32 (2013) 1641-1648. https://doi.org/10.1007/s10067-013-2319-y.

[80]

D. Ağagündüz, B. Yılmaz, T. Ö. Şahin, et al., Dairy lactic acid bacteria and their potential function in dietetics: the food-gut-health axis, Foods 10 (2021) 3099. https://doi.org/10.3390/foods10123099.

[81]

M. Kurajoh, T. Ka, C. Okuda, et al., Effects of bovine milk ingestion on urinary excretion of oxypurinol and uric acid, Int. J. Clin. Pharmacol. Ther. 49 (2011) 366-370. https://doi.org/10.5414/cp201508.

[82]

G. Mena-Sánchez, N. Babio, N. Becerra-Tomás, et al., Association between dairy product consumption and hyperuricemia in an elderly population with metabolic syndrome, Nutr. Metab. Cardiovasc. Dis. 30 (2020) 214-222. https://doi.org/10.1016/j.numecd.2019.09.023.

[83]

N. Dalbeth, R. Ames, G.D. Gamble, et al., Effects of skim milk powder enriched with glycomacropeptide and G600 milk fat extract on frequency of gout flares: a proof-of-concept randomised controlled trial, Ann. Rheum. Dis. 71 (2012) 929-934. https://doi.org/10.1136/annrheumdis-2011-200156.

[84]

J. Zhu, Y. Li, Z. Chen, et al., Screening of lactic acid bacteria strains with urate-lowering effect from fermented dairy products, J. Food Sci. 87(2022) 5118-5127. https://doi.org/10.1111/1750-3841.16351.

[85]

K.B. Min, J.Y. Min, Increased risk for hyperuricemia in adults sensitized to cow milk allergen, Clin. Rheumatol. 36 (2017) 1407-1412. https://doi.org/10.1007/s10067-016-3457-9.

[86]

L. L. Jiang, X. Gong, M. Y. Ji, et al., Bioactive compounds from plant-based functional foods: a promising choice for the prevention and management of hyperuricemia, Foods 9 (2020) 973. https://doi.org/10.3390/foods9080973.

[87]

B.J. Paul, K. Anoopkumar, V. Krishnan, Asymptomatic hyperuricemia: is it time to intervene, Clin. Rheumatol. 36 (2017) 2637-2644. https://doi.org/10.1007/s10067-017-3851-y.

[88]

M.Guasch-Ferré, M. Bulló, N. Babio, et al., Mediterranean diet and risk of hyperuricemia in elderly participants at high cardiovascular risk, J. Gerontol. A Biol. Sci. Med. Sci. 68 (2013) 1263-1270. https://doi.org/10.1093/gerona/glt028.

[89]

A.Kanbara, Y. Miura, H. Hyogo, et al., Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid, Nutr. J. 11 (2012) 39. https://doi.org/10.1186/1475-2891-11-39.

[90]

J.W. Anderson, P. Baird, R.H. Davis, et al., Health benefits of dietary fiber, Nutr. Rev. 67 (2009) 188-205. https://doi.org/10.1111/j.1753-4887.2009.00189.x.

[91]

E.C. Deehan, R.M. Duar, A.M. Armet, et al., Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health, Microbiol. Spectr. 5 (2017). https://doi.org/10.1128/microbiolspec.BAD-0019-2017.

[92]

T. Koguchi, T. Tadokoro, Beneficial effect of dietary fiber on hyperuricemia in rats and humans: a review, Int. J. Vitam. Nutr. Res. 89 (2019) 89-108. https://doi.org/10.1024/0300-9831/a000548.

[93]

Y. Sun, J. Sun, P. Zhang, et al., Association of dietary fiber intake with hyperuricemia in U.S. adults, Food Funct. 10 (2019) 4932-4940. https://doi.org/10.1039/c8fo01917g.

[94]

T. Koguchi, Modification of dietary habits for prevention of gout in Japanese people: Gout and micronutrient intake or alcohol consumption, Am. J. Health Res. 9 (2021) 143-157. https://doi.org/10.11648/j.ajhr.20210905.14.

[95]

L. Zhang, X. Shi, J. Yu, et al., Dietary vitamin E intake was inversely associated with hyperuricemia in US adults: NHANES 2009–2014, Ann. Nutr. Metab. 76 (2020) 354-360. https://doi.org/10.1159/000509628.

[96]

B. Kapoor, D. Kapoor, S. Gautam, et al., Dietary polyunsaturated fatty acids (PUFAs): uses and potential health benefits, Curr. Nutr. Rep. 10 (2021) 232-242. https://doi.org/10.1007/s13668-021-00363-3.

[97]

I. P. Kalafati, D. Borsa, M. Dimitriou, et al., Dietary patterns and non-alcoholic fatty liver disease in a Greek case-control study, Nutrition 61 (2019) 105-110. https://doi.org/10.1016/j.nut.2018.10.032.

[98]

T. Huang, K. Li, S. Asimi, et al., Effect of vitamin B12 and n-3 polyunsaturated fatty acids on plasma homocysteine, ferritin, C-reaction protein, and other cardiovascular risk factors: a randomized controlled trial, Asia Pac. J. Clin. Nutr. 24 (2015) 403-411. https://doi.org/10.6133/apjcn.2015.24.3.19.

[99]

T.H. Stea, S.B. Stølevik, S. Berntsen, et al., Effect of omega-3 and vitamins E + C supplements on the concentration of serum B-vitamins and plasma redox aminothiol antioxidant status in elderly men after strength training for three months, Ann. Nutr. Metab. 68 (2016) 145-155. https://doi.org/10.1159/000443847.

[100]

F. Oku, A. Hara, H. Tsujiguchi, et al., Association between dietary fat intake and hyperuricemia in men with chronic kidney disease, Nutrients 14 (2022) 2637. https://doi.org/10.3390/nu14132637.

[101]

H. Guo, S. Wang, H. Peng, et al., Dose-response relationships of tea and coffee consumption with gout: a prospective cohort study in the UK Biobank, Rheumatology (2023) kead019. https://doi.org/10.1093/rheumatology/kead019.

[102]

Y. Chen, L. Luo, S. Hu, et al., The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review, Crit. Rev. Food Sci. Nutr. (2022) 1-26. https://doi.org/10.1080/10408398.2022.2040417.

[103]

D. Wu, R. Chen, W. Zhang, et al., Tea and its components reduce the production of uric acid by inhibiting xanthine oxidase, Food Nutr. Res. 66 (2022). https://doi.org/10.29219/fnr.v66.8239.

[104]

A. Septembre-Malaterre, F. Remize, P. Poucheret, Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation, Food Res. Int. 104 (2018) 86-99. https://doi.org/10.1016/j.foodres.2017.09.031.

[105]

T. Nakagawa, M.A. Lanaspa, R.J. Johnson, The effects of fruit consumption in patients with hyperuricaemia or gout, Rheumatology 58 (2019) 1133-1141. https://doi.org/10.1093/rheumatology/kez128.

[106]

S. Feng, S. Wu, F. Xie, et al., Natural compounds lower uric acid levels and hyperuricemia: molecular mechanisms and prospective, Trends Food Sci. Tech. 123 (2022) 87-102. https://doi.org/10.1016/j.tifs.2022.03.002.

[107]

F. Zou, X. Zhao, F. Wang, A review on the fruit components affecting uric acid level and their underlying mechanisms, J. Food Biochem. 45 (2021) e13911. https://doi.org/10.1111/jfbc.13911.

[108]

R.Y. Pratiwi, A.Z. Juniarto, Effect of dragon fruit juice (Hylocereus polyrhizus) on xanthine oxidase activity and blood nitric oxide levels on rats with hyperuricemia, Jurnal Aisyah: Jurnal Ilmu Kesehatan 7 (2022) 765-772. https://doi.org/10.30604/jika.v7i3.1181.

[109]

Y. Yang, J.L. Zhang, Q. Zhou, Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review, Crit. Rev. Food Sci. Nutr. 62 (2022) 1119-1143. https://doi.org/10.1080/10408398.2020.1835819.

[110]

M.W. Collins, K.G. Saag, J.A. Singh, Is there a role for cherries in the management of gout?, Ther. Adv. Musculoskelet. Dis. 11 (2019). https://doi.org/10.1177/1759720X19847018.

[111]

J.G. Muir, S.J. Shepherd, O. Rosella, et al., Fructan and free fructose content of common Australian vegetables and fruit, J. Agric. Food Chem. 55 (2007) 6619-6627. https://doi.org/10.1021/jf070623x.

[112]

L.K. Massey, R.G. Palmer, H.T. Horner, Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes, J. Agric. Food Chem. 49 (2001) 4262-4266. https://doi.org/10.1021/jf010484y.

[113]

J. Liu, L.L. Sun, L. P. He, et al., Soy food consumption, cardiometabolic alterations and carotid intima-media thickness in Chinese adults, Nutr. Metab. Cardiovasc. Dis. 24 (2014) 1097-1104. https://doi.org/10.1016/j.numecd.2014.04.016.

[114]

N. Dalbeth, S. Wong, G.D. Gamble, et al., Acute effect of milk on serum urate concentrations: a randomised controlled crossover trial, Ann. Rheum. Dis. 69 (2010) 1677-1682. https://doi.org/10.1136/ard.2009.124230.

[115]

T. Fukuuchi, I. Itahashi, F. Takayanagi, et al., Determination of total purine and free purine content in milk, soymilk, and enteral nutritional supplements to assist nutritional therapy for hyperuricemia and gout, Nucleos. Nucleot. Nucl. 41 (2022) 1287-1295. https://doi.org/10.1080/15257770.2022.2093362.

[116]

R.H. Eckel, K.G. Alberti, S.M. Grundy, et al., The metabolic syndrome, The lancet 375 (2010) 181-183. https://doi.org/10.1016/S0140-6736(09)61794-3.

[117]

C. Yokose, N. McCormick, H. K. Choi, The role of diet in hyperuricemia and gout, Curr. Opin. Rheumatol. 33 (2021) 135-144. https://doi.org/10.1097/BOR.0000000000000779.

[118]

T. Nakagawa, K.R. Tuttle, R.A. Short, Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome, Nat. Clin. Pract. Nephrol. 1 (2005) 80-86. https://doi.org/10.1038/ncpneph0019.

[119]

T. T. Braga, M. F. Forni, M. Correa-Costa, et al., Soluble uric acid activates the NLRP3 inflammasome, Sci. Rep. 7 (2017) 39884. https://doi.org/10.1038/srep39884.

[120]

C.L. Wu, W.H. Tsai, J.S. Liu, et al., Vegan diet is associated with a lower risk of chronic kidney disease in patients with hyperuricemia, Nutrients 15 (2023) 1444. https://doi.org/10.3390/nu15061444.

[121]

K. Yamagata, Polyphenols regulate endothelial functions and reduce the risk of cardiovascular disease, Curr. Pharm. Des. 25 (2019) 2443-2458. https://doi.org/10.2174/1381612825666190722100504.

[122]

L. Sun, C. Ni, J. Zhao, et al., Probiotics, bioactive compounds and dietary patterns for the effective management of hyperuricemia: a review, Crit. Rev. Food Sci. Nutr. 64 (2024) 2016-2031. https://doi.org/10.1080/10408398.2022.2119934.

[123]

A. Iwaniak, P. Minkiewicz, M. Darewicz, Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in Blood Pressure Reduction, Compr. Rev. Food Sci. Food Saf. 13 (2014) 114-134. https://doi.org/10.1111/1541-4337.12051.

[124]

J. Sharifi-Rad, C.F. Rodrigues, F. Sharopov, et al., Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds, Int. J. Environ. Res. Public Health 17 (2020) 2326. https://doi.org/10.3390/ijerph17072326.

[125]

D. Toyoki, S. Shibata, E. Kuribayashi-Okuma, et al., Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2, Am. J. Physiol. Renal Physiol. 313 (2017) F826-F834. https://doi.org/10.1152/ajprenal.00012.2017.

Food Science and Human Wellness
Article number: 9250054
Cite this article:
Qiao K, Zhou X, Zhang L, et al. Metabolic mechanism of dietary factors and effect of dietary types associated with hyperuricemia: a review. Food Science and Human Wellness, 2025, 14(3): 9250054. https://doi.org/10.26599/FSHW.2024.9250054
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return