PDF (5.4 MB)
Collect
Submit Manuscript
Article | Open Access

Comparative metabolomics reveal histamine biodegradation mechanism by salt stressed Bacillus subtilis JZXJ-7

Rundong Wanga,b,cYijia Denga,b,c()Yuhao Zhangb,d()Xuepeng LicRavi GooneratneeJianrong Lib,c
College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China
College of Food Science, Southwest University, Chongqing 400715, China
College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China
Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• 340 mmol/L NaCl addition significantly activated B. subtilis JZXJ-7 metabolism and promoted histamine degradation.

• The growth capacity, Na+, K+-ATPase activity and antioxidant enzymes activities of B. subtilis JZXJ-7 were markedly increased after 340 mmol/L NaCl treatment.

• Amino acids and its metabolites, benzene and substituted derivatives, heterocyclic compounds and organic acids and derivatives were the main metabolites during B. subtilis JZXJ-7 histamine degradation.

• The metabolic pathways including D-glutamine, D-glutamate, L-arginine, L-proline and histidine metabolism, L-lysine degradation and aminoacyl-tRNA biosynthesis were related to histamine degradation by B. subtilis JZXJ-7.

Abstract

Bacillus subtilis JZXJ-7 isolated from shrimp paste can significantly degrade histamine under salt stress but the mechanism is unclear. This study aims to evaluate the effect of 170 and 340 mmol/L NaCl on B. subtilis JZXJ-7 growth, histamine degradation, antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST)) activities and Na+/K+-ATPase activity. Furthermore, comparative metabolomics was used to investigate histamine biodegradation mechanism by B. subtilis JZXJ-7 subjected to salt stress. Both 170 and 340 mmol/L NaCl promoted B. subtilis JZXJ-7 growth in late stages of reproduction (32−48 h), increased histamine degradation rate by 64.85% and 79.87% (P < 0.05), Na+/K+-ATPase activity to 6.28 (P < 0.05) and 11.63 U/mg (P < 0.01) respectively. NaCl treatment significantly increased the activities of CAT, GST and SOD (P < 0.05), amino acids and its metabolites (33.39%), benzene and substituted derivatives (12.05%), heterocyclic compounds (10.62%), organic acids and derivatives (9.75%), aldehydes, ketones, esters (5.59%) and nucleotides and its metabolites (4.58%). Metabolite set enrichment analysis revealed NaCl induced differential metabolic pathways of D-glutamine, D-glutamate, L-arginine, L-proline, histidine and glycerophospholipids, L-lysine degradation, and aminoacyl-tRNA biosynthesis. Exposure to 340 mmol/L NaCl up-regulated carbohydrate, glutathione and glycerophospholipid metabolism. The new insights into the mechanism of salt stress to promote B. subtilis JZJX-7 growth, energy metabolic pathways and to degrade histamine provide the theoretical basis for application of B. subtilis JZXJ-7 in food fermentation industry.

References

[1]

A.D.Q. Nguyen, A. Sekar, M. Kim, et al., Fish sauce fermentation using Marinococcus halotolerans SPQ isolate as a starter culture, Food Sci. Nutr. 9 (2020) 651-661. https://doi.org/10.1002/fsn3.2024.

[2]

J. Yu, K. Lu, J.Y. Sun, et al., The flavor and antioxidant activity change pattern of shrimp head paste during fermentation, J. Ocean U. China 21 (2022) 195-203. https://doi.org/10.1007/s11802-022-4814-8.

[3]

X. Sang, K. Li, Y.L. Zhu, et al., The impact of microbial diversity on biogenic amines formation in grasshopper sub shrimp paste during the fermentation, Front. Microbiol. 11 (2020) 782. https://doi.org/10.3389/fmicb.2020.00782.

[4]

B. de las Rivas, A. Marcobal, A.V. Carrascosa, et al., PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine, J. Food Protect. 69 (2007) 2509-2514. https://doi.org/10.4315/0362-028X-69.10.2509.

[5]

D.O.A. Gawad, M.M.T. Emara, G.M.A. Kassem, et al., Monitoring the fatty acids profile and biogenic amines content in salted grey mullet (Fessiekh) fermented by lactic acid bacteria, Egyptian J. Aquatic Res. 48 (2022) 409-415. https://doi.org/10.1016/j.ejar.2021.12.002.

[6]

B.Y. Chung, S.Y. Park, Y.S. Byun, et al., Effect of different cooking methods on histamine levels in selected foods, Ann. Dermatol. 29 (2017) 706-714. https://doi.org/10.5021/ad.2017.29.6.706.

[7]

X. Sang, X.X. Ma, H.S. Hao, et al., Evaluation of biogenic amines and microbial composition in the Chinese traditional fermented food grasshopper sub shrimp paste, LWT-Food Sci. Technol. 134 (2020) 109979. https://doi.org/10.1016/j.lwt.2020.109979.

[8]

W. Jiang, Y. Xu, C.S. Li, et al., Biogenic amines in commercially produced Yulu, a Chinese fermented fish sauce, Food Addit. Contam.: B 7 (2014) 25-29. https://doi.org/10.1080/19393210.2013.831488.

[9]

Y.K. Park, J.H. Lee, J. Mah, Occurrence and reduction of biogenic amines in Kimchi and Korean fermented seafood products, Foods 8 (2019) 547. https://doi.org/10.3390/foods8110547.

[10]

X. Ma, Y. Zhang, X. Li, et al., Impacts of salt-tolerant Staphylococcus nepalensis 5-5 on bacterial composition and biogenic amines accumulation in fish sauce fermentation, Int. J. Food Microbiol. 361 (2022) 109464. https://doi.org/10.1016/j.ijfoodmicro.2021.109464.

[11]

Y.R. Zhao, X. Sang, H.S. Hao, et al., Novel starter cultures Virgibacillus spp. selected from grasshopper sub shrimp paste to inhibit biogenic amines accumulation, AMB Express 11 (2021) 25. https://doi.org/10.1186/s13568-021-01186-9.

[12]

C. Park, W. Park, Survival and energy producing strategies of alkane degraders under extreme conditions and their biotechnological potential, Front. Microbiol. 9 (2018) 1081. https://doi.org/10.3389/fmicb.2018.01081.

[13]

Y.C. Lee, C.S. Lin, F.L. Liu, et al., Degradation of histamine by Bacillus polymyxa isolated from salted fish products, J. Food Drug Anal. 23 (2015) 836-844. https://doi.org/10.1016/j.jfda.2015.02.003.

[14]

Q.F. Zhang, G.Q. Lan, X.Y. Tian, et al., Effect of adding Bifidobacterium animalis BZ25 on the flavor, functional components and biogenic amines of natto by Bacillus subtilis GUTU09, Foods 11 (2022) 2674. https://doi.org/10.3390/foods11172674.

[15]

H. Hannes, M. Ulrike, O. Andreas, et al., Comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation, J. Bacteriol. 192 (2010) 870-882. https://doi.org/10.1128/JB.01106-09.

[16]

J. Zhang, N.Q. Sha, Y.H. Li, et al., Identification and characterization of HD1, a novel ofloxacin-degrading Bacillus strain, Front. Microbiol. 13 (2022) 828922. https://doi.org/10.3389/fmicb.2022.828922.

[17]

Y.J. Deng, S.Y. Wang, Sorption of cellulases in biofilm enhances cellulose degradation by Bacillus subtilis, Microorganisms 10 (2022) 1505. https://doi.org/10.3390/microorganisms10081505.

[18]

J. Ju, S.E. Tinyiro, W.R. Yao, et al., The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food, J. Food Process. Pres. 43 (2019) e14122. https://doi.org/10.1111/jfpp.14122.

[19]

H. Pištěková, P. Jančová, L. Buňková, et al., Detection and relative quantification of amine oxidase gene (yobN) in Bacillus subtilis: application of real-time quantitative PCR, J. Food Sci. Technol. 59 (2022) 909-916. https://doi.org/10.1007/s13197-021-05090-9.

[20]

M.C. Urdaci, M. Lefevre, G. Lafforgue, et al., Antidiarrheal action of Bacillus subtilis CU1 CNCM I-2745 and Lactobacillus plantarum CNCM I-4547 in mice, Front. Microbiol. 9 (2018) 1537. https://doi.org/10.3389/fmicb.2018.01537

[21]

S. Kruse, F. Pierre, G.E. Morlock, Effects of the probiotic activity of Bacillus subtilis DSM 29784 in cultures and feeding stuff, J. Agric. Food Chem. 69 (2021) 11272-11281. https://doi.org/10.1021/acs.jafc.1c04811.

[22]

B. Singh, G. Kumar, K. Kumar, et al., Enhanced phytase production by Bacillus subtilis subsp. subtilis in solid state fermentation and its utility in improving food nutrition, Protein Peptide Lett. 28 (2021) 1083-1089. https://doi.org/10.2174/0929866528666210720142359.

[23]

Y.J. Deng, R.D. Wang, X.P. Li, et al., Bacterial community succession during long-term fermentation of shrimp paste and its effect on formation of biogenic amines, Food Sci. 43 (2022) 164-173. https://doi.org//10.7506/spkx1002-6630-20220306-076.

[24]

Y. Feng, T.H. Ming, J. Zhou, et al., The response and survival mechanisms of Staphylococcus aureus under high salinity stress in salted foods, Foods 11 (2022) 1503. https://doi.org/10.3390/foods11101503.

[25]

Y.J. Wu, X.Y. Cai, S.H. Jiang, Simultaneous identification and determination of biogenic amines in Pueraria lobata by ultra-high performance liquid chromatography, SN Appl. Sci. 2 (2020) 1688. https://doi.org/10.1007/s42452-020-03404-8.

[26]

N.J. Kruger, The bradford method for protein quantitation, the protein protocols, Handbook, Springer, 2009, pp. 17-24. https://doi.org/10.1385/0-89603-268-X:9.

[27]

M.F. Qiao, H.C. Wu, Y. Liu, et al., Effect of salt stress on acetoin metabolism of an aroma-producing strain Bacillus subtilis, Appl. Biochem. Microbiol. 55 (2019) 506-513. https://doi.org/10.1134/S0003683819050107.

[28]

L. Li, L.Y. Ruan, A.Y. Ji, et al., Biogenic amines analysis and microbial contribution in traditional fermented food of Douchi, Sci. Rep. 8 (2018) 2567. https://doi.org/10.1038/s41598-018-30456-z.

[29]

M.L. Zhu, X.F. Dai, High salt cross-protects Escherichia coli from antibiotic treatment through increasing efflux pump expression, mSphere 3 (2018) e00095-18. https://doi.org/10.1128/mSphere.00095-18.

[30]

L. Gebicka, J. Krych-Madej, The role of catalases in the prevention/promotion of oxidative stress, J. Inorg. Biochem. 197 (2019) 110699. https://doi.org/10.1016/j.jinorgbio.2019.110699.

[31]

Y.F. Lin, Q. Xiao, Q.W. Hao, et al., Genome-wide identification and functional analysis of the glutathione S-transferase (GST) family in Pomacea canaliculata , Int. J. Biol. Macromol. 193 (2021) 2062-2069. https://doi.org/10.1016/j.ijbiomac.2021.11.038.

[32]

T.W. Song, S.S. Li, Y.F. Lu, et al., Biodegradation of hydrolyzed polyacrylamide by a Bacillus megaterium strain SZK-5: functional enzymes and antioxidant defense mechanism, Chemosphere 231 (2019) 184-193. https://doi.org/10.1016/j.chemosphere.2019.05.143.

[33]

D. Bartling, R. Radzio, U. Steiner, et al., A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana, Molecular cloning and functional characterization, Eur. J. Biochem. 216 (1993) 579-586. https://doi.org/10.1111/j.1432-1033.1993.tb18177.x.

[34]

H. Yang, Y. Meng, Y.X. Song, et al., Salinity fluctuation influencing biological adaptation: growth dynamics and Na+/K+-ATPase activity in a euryhaline bacterium, J. Basic Microbiol. 57 (2017) 617-624. https://doi.org/10.1002/jobm.201700124.

[35]

S.J. Yao, R.Q. Zhou, Y. Jin, et al., Co-culture with Tetragenococcus halophilus changed the response of Zygosaccharomyces rouxii to salt stress, Process Biochem. 95 (2020) 279-287. https://doi.org/10.1016/j.procbio.2020.02.021.

[36]

Q. Liu, J.R. Ding, W.J. Huang, et al., OsPP65 negatively regulates osmotic and salt stress responses through regulating phytohormone and raffinose family oligosaccharide metabolic pathways in rice, Rice 15 (2022) 1-15. https://doi.org/10.1186/s12284-022-00581-5.

[37]

A.A. Saddhe, R. Manuka, S. Penna, Plant sugars: homeostasis and transport under abiotic stress in plants, Physiol. Plant 171 (2021) 739-755. https://doi.org/10.1111/ppl.13283.

[38]

O. Orelle, K. Mathieu, J. Jault, et al., Multidrug ABC transporters in bacteria, Res. Microbiol. 170 (2019) 381-391. https://doi.org/10.1016/j.resmic.2019.06.001.

[39]

W.L. Li, J.F. Wang, Y. Lü, et al., Improving cadmium mobilization by phosphate-solubilizing bacteria via regulating organic acids metabolism with potassium, Chemosphere 244 (2020) 125475. https://doi.org/10.1016/j.chemosphere.2019.125475.

[40]

A. Saeid, E. Prochownik, J. Dobrowolska-Iwanek, Phosphorus solubilization by Bacillus species, Molecules 23 (2018) 2897. https://doi.org/10.3390/molecules23112897.

[41]

U. Etxeberria, A.L. de la Garza, J.A. Martínez, et al., Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats, J. Physiol. Biochem. 69 (2013) 613-623. https://doi.org/10.1007/s13105-013-0232-0.

[42]

Y.D. Xie, B.T. Wang, W. Li, et al., Characterization and virulence of Streptococcus agalactiae deficient in EIIA of the cellobiose-specific phosphotransferase system, Aquacult. Rep. 20 (2021) 100693. https://doi.org/10.1016/j.aqrep.2021.100693.

[43]

Z. Peng, M.A. Ehrmann, A. Waldhuber, et al., Phosphotransferase systems in Enterococcus faecalis OG1RF enhance anti-stress capacity in vitro and in vivo, Res. Microbiol. 168 (2017) 558-566. https://doi.org/10.1016/j.resmic.2017.03.003.

[44]

M. Park, W.J. Mitchell, F. Rafii, Effect of trehalose and trehalose transport on the tolerance of Clostridium perfringens to environmental stress in a wild type strain and its fluoroquinolone-resistant mutant, Int. J. Microbiol. (2016) 4829716. https://doi.org/10.1155/2016/4829716.

[45]

L. Chen, X. Wei, G.L. Liu, et al., Glycerol, trehalose and vacuoles had relations to pullulan synthesis and osmotic tolerance by the whole genome duplicated strain Aureobasidium melanogenum TN3-1 isolated from natural honey, Int. J. Biol. Macromol. 165 (2020) 131-140. https://doi.org/10.1016/j.ijbiomac.2020.09.149.

[46]

P.N.S. Yadav, D.K. Rai, J.S. Yadav, Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β-D-glucosamine and N-acetyl-β-D-muramic acid, J. Mol. Struct. 194 (1989) 19-31. https://doi.org/10.1016/0022-2860(89)80067-5.

[47]

M.M. Wang, E.W.C. Chan, C. Yang, et al., N-acetyl-D-glucosamine acts as adjuvant that re-sensitizes starvation-induced antibiotic-tolerant population of E. coli to β-lactam, iScience 23 (2020) 101740. https://doi.org/10.1016/j.isci.2020.101740.

[48]

F. Kunst, G. Rapoport, Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis, J. Bacteriol. 177 (1995) 2403-2407. https://doi.org/10.1128/jb.177.9.2403-2407.1995.

[49]

G.X. Su, B.J. Yu, W.H. Zhang, et al., Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots, Plant Physiol. Biochem. 45 (2007) 560-566. https://doi.org/10.1016/j.plaphy.2007.05.007.

[50]

X.M. Xu, G.M. Liu, G. Jia, et al., Effects of spermine on the proliferation and migration of porcine intestinal epithelial cells, Anim. Biotechnol. 8 (2021) 1-8. https://doi.org/10.1080/10495398.2021.1955699.

[51]

J.A. Meadows, M.J. Wargo, Carnitine in bacterial physiology and metabolism, Microbiol. 161 (2015) 1161–1174. https://doi.org/10.1099/mic.0.000080.

[52]

P. Bazire, N. Perchat, E. Darii, et al., Characterization of L-carnitine metabolism in Sinorhizobium meliloti, J. Bacteriol. 201(2019) e00772-18. https://doi.org/10.1128/JB.00772-18.

[53]

X.P. Fu, J.Y. Zhang, T. Li, et al., The outer membrane protein OmpW enhanced V. cholerae frowth in hypersaline conditions by transporting carnitine, Front. Microbiol. 8 (2017) 2703. https://doi.org/10.3389/fmicb.2017.02703.

[54]

T. Hoffmann, E. Bremer, Protection of Bacillus subtilis against cold stress via compatible-solute acquisition, J. Bacteriol. 193 (2011) 1552-1562. https://doi.org/10.1128/JB.01319-10.

[55]

Y. Yu, I.F. Moretti, N.A. Grzeschika, et al., Coenzyme a levels influence protein acetylation, CoAlation and 4’-phosphopantetheinylation: expanding the impact of a metabolic nexus molecule, BBA-Mol. Cell Res. 1868 (2021) 118965. https://doi.org/10.1016/j.bbamcr.2021.118965.

[56]

M.J. Xu, M. Tang, J.M. Chen, et al., PII signal transduction protein GlnK alleviates feedback inhibition of N-acetyl-L-glutamate kinase by L-arginine in Corynebacterium glutamicum, Appl. En. Microbiol. 86 (2020) e00039-20. https://doi.org/10.1128/AEM.00039-20.

[57]

M.M. Liu, M.X. Feng, K. Yang, et al., Transcriptomic and metabolomic analyses reveal antibacterial mechanism of astringent persimmon tannin against methicillinresistant Staphylococcus aureus isolated from pork, Food Chem. 309 (2020) 125692. https://doi.org/10.1016/j.foodchem.2019.125692.

[58]

M. Muraoka, S. Yoshida, M. Ohno, et al., Reactivity of γ-glutamyl-cysteine with intracellular and extracellular glutathione metabolic enzymes, FEBS Lett. 596 (2022) 180-188. https://doi.org/10.1002/1873-3468.14261.

[59]

G. Wang, J.S. Zhang, G.F. Wang, et al., Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize, Plant Cell Rep. 26 (2014) 2582–2600. https://doi.org/10.1105/tpc.114.125559.

[60]

N. Krishnan, M.B. Dickman, D.F. Becker, Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress, Free Radical Biol. Med. 44 (2008) 671-681. https://doi.org/10.1016/j.freeradbiomed.2007.10.054.

[61]

A. de Andrade Santos, J.A.G. Silveira, E. de Araujo Guilherme, et al., Changes induced by co-inoculation in nitrogen-carbon metabolism in cowpea under salinity stress, Braz. J. Microbiol. 49 (2018) 685-694. https://doi.org/10.1016/j.bjm.2018.01.007.

[62]

A. Incharoensakdi, K. Karnchanatat, Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophytica, BBA-General Subjects 1621 (2003) 102-109. https://doi.org/10.1016/S0304-4165(03)00052-7.

[63]

L. Leblanc, K. Gouffi, F. Leroi, et al., Uptake of choline from salmon flesh and its conversion to glycine betaine in response to salt stress in Shewanella putrefaciens, Int. J. Food Microbiol. 65 (2001) 93-103. https://doi.org/10.1016/S0168-1605(00)00516-X.

[64]

R.N. Ivanovsky, N.V. Lebedeva1, T.P. Tourova, A new glance on the mechanism of autotrophic CO2 assimilation in green sulfur bacteria, Microbiol. 91 (2022) 225-234. https://doi.org/10.1134/S0026261722300026.

[65]

R.R. He, W.J. Chen, H.M. Chen, et al., Antibacterial mechanism of linalool against L. monocytogenes, a metabolomic study, Food Control 132 (2022) 108533. https://doi.org/10.1016/j.foodcont.2021.108533.

[66]

D. Stecker, T. Hoffmann, H. Link, et al., L-proline synthesis mutants of Bacillus subtilis overcome osmotic sensitivity by genetically adapting L-arginine metabolism, Front. Microbiol. 13 (2022) 908304. https://doi.org/10.3389/fmicb.2022.908304.

[67]

K. Gerstle, K. Kltschke, U. Hahn, et al., The small RNA RybA regulates key-genes in the biosynthesis of aromatic amino acids under peroxide stress in E. coli, RNA Biol. 9 (2012) 458-468. https://doi.org/10.4161/rna.19065.

[68]

G.O. Osuji, Glutathione turnover and amino acid uptake in yeast: evidence for the participation of the γ-glutamyl cycle in amino acid transport, FEBS Lett. 105 (1979) 283-285. https://doi.org/10.1016/0014-5793(79)80630-4.

[69]

J.Q. Cui, Y.Q. Li, Q.S. He, et al., Effects of different surfactants on the degradation of petroleum hydrocarbons by mixed-bacteria, J. Chem. Technol. Biotechnol. 97 (2022) 208-217. https://doi.org/10.1002/jctb.6931.

[70]

Q.Q. Lu, X.Z. Zhou, R.D. Liu, et al., Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris, Ecotox. Environ. Safe. 249 (2020) 114451. https://doi.org/10.1016/j.ecoenv.2022.114451.

Food Science and Human Wellness
Article number: 9250061
Cite this article:
Wang R, Deng Y, Zhang Y, et al. Comparative metabolomics reveal histamine biodegradation mechanism by salt stressed Bacillus subtilis JZXJ-7. Food Science and Human Wellness, 2025, 14(3): 9250061. https://doi.org/10.26599/FSHW.2024.9250061
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return