PDF (2.1 MB)
Collect
Submit Manuscript
Article | Open Access

Insights into the biogenic amine-generating microbes during two different types of soy sauce fermentation as revealed by metagenome-assembled genomes

Guiliang TanaYi WangaMin Hub()Xueyan LiaXiangli LicZiqiang PanaMei LiaLin LiaZiyi ZhengaLei Shid,e()
School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
School of Health Industry, Zhongshan Torch Polytechnic, Zhongshan 528436, China
Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
Shandong Yuwang Ecological Food Industry Co., Ltd., Yucheng 251200, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

Tetragenococcus, Staphylococcus, and Weissella dominated the JP and CP communities.

• Putrescine, tyramine, and histamine had the most abundance, but varied in JP and CP.

• BA-producing genes exhibited different abundance profiles between the two fermentation types.

• The metabolic pathways of microbial species (MAGs) for BA production were reconstructed.

Graphical Abstract

View original image Download original image

Abstract

In-depth knowledge of the microbes responsible for biogenic amine (BA) production during soy sauce fermentation remains limited. Herein, the variations in the BA profiles, microbial communities, and microbes involved in BA production during the fermentation of soy sauce through Japanese-type (JP) and Cantonese-type (CP) processes were compared. BA analysis revealed that the most abundant BA species were putrescine, tyramine, and histamine in the later three stages (1187.68, 785.16, and 193.20 mg/kg on average, respectively). The BA profiles differed significantly, with CP samples containing higher contents of putrescine, tyramine, and histamine (P < 0.05) at the end of fermentation. Metagenomic analysis indicated that BA-producing genes exhibited different abundance profiles, with most genes, including speA, speB, arg, speE, and tyrDC, having higher abundances in microbial communities during the CP process. In total, 15 high-quality metagenome-assembled genomes (MAGs) were retrieved, of which 10 encoded at BA production-related genes. Enterococcus faecium (MAG10) and Weissella paramesenteroides (MAG5) might be the major tyramine producers. The high putrescine content in CP might be associated with the high abundance of Staphylococcus gallinarum (MAG8). This study provides a comprehensive understanding of the diversity and abundance of genes involved in BA synthesis, especially at the species level, during food fermentation.

Electronic Supplementary Material

Download File(s)
fshw-14-3-9250064_ESM1.docx (39.4 KB)
fshw-14-3-9250064_ESM2.pdf (3.1 MB)
fshw-14-3-9250064_ESM3.pdf (17.8 KB)
fshw-14-3-9250064_ESM4.pdf (1.1 MB)
fshw-14-3-9250064_ESM5.pdf (185.3 KB)

References

[1]
AlvarezM.A.Moreno-ArribasM.V.The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solutionTrends Food Sci. Technol.20143914615510.1016/j.tifs.2014.07.007

M.A. Alvarez, M.V. Moreno-Arribas, The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution, Trends Food Sci. Technol. 39 (2014) 146-155. https://doi.org/10.1016/j.tifs.2014.07.007.

[2]

W. Ahmad, G.I. Mohammed, D.A. Al-Eryani, et al., Biogenic amines formation mechanism and determination strategies: future challenges and limitations, Crit. Rev. Anal. Chem. 50 (2020) 485-500. https://doi.org/10.1080/10408347.2019.1657793.

[3]

F. Barbieri, C. Montanari, F. Gardini, et al., Biogenic amine production by lactic acid bacteria: a review, Foods 8 (2019) 17. https://doi.org/10.3390/foods8010017.

[4]

N. Benkerroum, Biogenic amines in dairy products: origin, incidence, and control means, Compr. Rev. Food Sci. Food Saf. 15 (2016) 801-826. https://doi.org/10.1111/1541-4337.12212.

[5]

M. Coton, A. Romano, G. Spano, et al., Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider, Food Microbiol. 27 (2010) 1078-1085. https://doi.org/10.1016/j.fm.2010.07.012.

[6]

A.R. Shalaby, Significance of biogenic amines to food safety and human health, Food Res. Int. 29 (1996) 675-690. https://doi.org/10.1016/S0963-9969(96)00066-X.

[7]

A. Marcobal, B. de Las Rivas, J.M. Landete, et al., Tyramine and phenylethylamine biosynthesis by food bacteria, Crit. Rev. Food Sci. Nutr. 52 (2012) 448-467. https://doi.org/10.1080/10408398.2010.500545.

[8]

Y. Feng, C. Cui, H. Zhao, et al., Effect of koji fermentation on generation of volatile compounds in soy sauce production, Int. J. Food Sci. Technol. 48 (2013) 609-619. https://doi.org/10.1111/ijfs.12006.

[9]

P.V.P. Devanthi, K. Gkatzionis, Soy sauce fermentation: microorganisms, aroma formation, and process modification, Food Res. Int. 120 (2019) 364-374. https://doi.org/10.1016/j.foodres.2019.03.010.

[10]

X. Liu, M. Qian, Y. Shen, et al., An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation, Food Chem. 349 (2021) 129131. https://doi.org/10.1016/j.foodchem.2021.129131.

[11]

G. Tan, Y. Wang, M. Hu, et al., Comparative evaluation of the microbial diversity and metabolite profiles of Japanese-style and Cantonese-style soy sauce fermentation, Front. Microbiol. 13 (2022) 976206. https://doi.org/10.3389/fmicb.2022.976206.

[12]

Y.M. Lu, X.H. Chen, M. Jiang, et al., Biogenic amines in Chinese soy sauce, Food Control. 20 (2009) 593-597. https://doi.org/10.1016/j.foodcont.2008.08.020.

[13]

R. Stute, K. Petridis, H. Steinhart, et al., Biogenic amines in fish and soy sauces, Eur. Food Res. Technol. 215 (2002) 101-107. https://doi.org/10.1007/s00217-002-0509-y.

[14]

K.H. Kim, B.H. Chun, J. Kim, et al., Identification of biogenic amine-producing microbes during fermentation of ganjang, a Korean traditional soy sauce, through metagenomic and metatranscriptomic analyses, Food Control 121 (2021) 107681. https://doi.org/10.1016/j.foodcont.2020.107681.

[15]

J. Li, H. Huang, W. Feng, et al., Dynamic changes in biogenic amine content in the traditional brewing process of soy sauce, J. Food Prot. 82 (2019) 1539-1545. https://doi.org/10.4315/0362-028X.JFP-19-035.

[16]

Q. Qi, J. Huang, R. Zhou, et al., Characterizing microbial community and metabolites of Cantonese soy sauce, Food Biosci. 40 (2021) 100872. https://doi.org/10.1016/j.fbio.2020.100872.

[17]

L. Zhang, J. Huang, R. Zhou, et al., Dynamics of microbial communities, ethyl carbamate, biogenic amines, and major metabolites during fermentation of soy sauce, Food Sci. Technol. Res. 27 (2021) 405-416. https://doi.org/10.3136/fstr.27.405.

[18]

D.M. Han, B.H. Chun, T. Feng, et al., Dynamics of microbial communities and metabolites in ganjang, a traditional Korean fermented soy sauce, during fermentation, Food Microbiol. 92 (2020) 103591. https://doi.org/10.1016/j.fm.2020.103591.

[19]

J. Sulaiman, H.M. Gan, W.F. Yin, et al., Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine, Front. Microbiol. 5 (2014) 556. https://doi.org/10.3389/fmicb.2014.00556.

[20]

B.H. Chun, D.M. Han, K.H. Kim, et al., Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses, Food Microbiol. 83 (2019) 36-47. https://doi.org/10.1016/j.fm.2019.04.009.

[21]

J. Ma, Y. Nie, L. Zhang, et al., Ratio of histamine-producing/non-histamine-producing subgroups of Tetragenococcus halophilus determines the histamine accumulation during spontaneous fermentation of soy sauce, Appl. Environ. Microbiol. 89 (2023) e01884-22. https://doi.org/10.1128/aem.01884-22.

[22]

O.G.G. Almeida, E.C.P. de Martinis, Metagenome-assembled genomes contribute to unraveling of the microbiome of cocoa fermentation, Appl. Environ. Microbiol. 87 (2021) e00584-21. https://doi.org/10.1128/AEM.00584-21.

[23]

B.H. Chun, D.M. Han, H.M. Kim, et al., Metabolic features of ganjang (a Korean traditional soy sauce) fermentation revealed by genome-centered metatranscriptomics, mSystems. 6 (2021) e00441-21. https://doi.org/10.1128/mSystems.00441-21.

[24]

M. Verce, L. de Vuyst, S. Weckx, The metagenome-assembled genome of Candidatus Oenococcus aquikefiri from water kefir represents the species Oenococcus sicerae, Food Microbiol. 88 (2020) 103402. https://doi.org/10.1016/j.fm.2019.103402.

[25]

G. Tan, M. Hu, X. Li, et al., High-throughput sequencing and metabolomics reveal differences in bacterial diversity and metabolites between red and white sufu, Front. Microbiol. 11 (2020) 758. https://doi.org/10.3389/fmicb.2020.00758.

[26]

M. Hu, J. Dong, G. Tan, et al., Metagenomic insights into the bacteria responsible for producing biogenic amines in sufu, Food Microbiol. 98 (2021) 103762. https://doi.org/10.1016/j.fm.2021.103762.

[27]

J. Liang, D. Li, R. Shi, et al., Effects of different co-cultures on the amino acid availability, biogenic amine concentrations and protein metabolism of fermented sufu and their relationships, LWT-Food Sci. Technol. 113 (2019) 108323. https://doi.org/10.1016/j.lwt.2019.108323.

[28]

A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics. 30 (2014) 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.

[29]

Y. Peng, H.C. Leung, S.M. Yiu, et al., IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics 28 (2012) 1420-1428. https://doi.org/10.1093/bioinformatics/bts174.

[30]

W. Zhu, A. Lomsadze, M. Borodovsky, Ab initio gene identification in metagenomic sequences, Nucleic Acids Res. 38 (2010) e132. https://doi.org/10.1093/nar/gkq275.

[31]

L. Fu, B. Niu, Z. Zhu, et al., CD-HIT: accelerated for clustering the next-generation sequencing data, Bioinformatics 28 (2012) 3150-3152. https://doi.org/10.1093/bioinformatics/bts565.

[32]

B. Buchfink, C. Xie, D.H. Huson, Fast and sensitive protein alignment using DIAMOND, Nat. Methods 12 (2015) 59-60. https://doi.org/10.1038/nmeth.3176.

[33]

D.H. Huson, A.F. Auch, J. Qi, et al., MEGAN analysis of metagenomic data, Genome Res. 17 (2007) 377-386. https://doi.org/10.1101/gr.5969107.

[34]

B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods 9 (2012) 357-359. https://doi.org/10.1038/nmeth.1923.

[35]

T. Aramaki, R. Blanc-Mathieu, H. Endo, et al., KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold, Bioinformatics 36 (2020) 2251-2252. https://doi.org/10.1093/bioinformatics/btz859.

[36]

R. Patro, G. Duggal, M.I. Love, et al., Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods 14 (2017) 417-419. https://doi.org/10.1038/nmeth.4197.

[37]

J. Alneberg, B.S. Bjarnason, I. de Bruijn, et al., Binning metagenomic contigs by coverage and composition, Nat. Methods 11 (2014) 1144-1146. https://doi.org/10.1038/nmeth.3103.

[38]

D.H. Parks, M. Imelfort, C.T. Skennerton, et al., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res. 25 (2015) 1043-1055. https://doi.org/10.1101/gr.186072.114.

[39]

D. Hyatt, G.L. Chen, P.F. LoCascio, et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics 11 (2010) 119. https://doi.org/10.1186/1471-2105-11-119.

[40]

P.A. Chaumeil, A.J. Mussig, P. Hugenholtz, et al., GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database, Bioinformatics 36 (2020) 1925-1927. https://doi.org/10.1093/bioinformatics/btz848.

[41]

C. Jain, L.M. Rodriguez-R, A.M. Phillippy, et al., High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nat. Commun. 9 (2018) 5114. https://doi.org/10.1038/s41467-018-07641-9.

[42]

J. Leech, R. Cabrera-Rubio, A.M. Walsh, et al., Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants, mSystems 5 (2020) e00522-20. https://doi.org/10.1128/mSystems.00522-20.

[43]

N. Segata, D. Börnigen, X.C. Morgan, et al., PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes, Nat. Commun. 4 (2013) 2304. https://doi.org/10.1038/ncomms3304.

[44]

B. Liu, D. Zheng, S. Zhou, et al., VFDB 2022: a general classification scheme for bacterial virulence factors, Nucleic Acids Res. 50 (2021) D912-D917. https://doi.org/10.1093/nar/gkab1107.

[45]

Y.K. Park, J.H. Lee, J.H. Mah, Occurrence and reduction of biogenic amines in traditional Asian fermented soybean foods: a review, Food Chem. 278 (2019) 1-9. https://doi.org/10.1016/j.foodchem.2018.11.045.

[46]

J. Guo, W. Luo, J. Fan, et al., Co-inoculation of Staphylococcus piscifermentans and salt-tolerant yeasts inhibited biogenic amines formation during soy sauce fermentation, Food Res. Int. 137 (2020) 109436. https://doi.org/10.1016/j.foodres.2020.109436.

[47]

L. Zhang, R. Zhou, R. Cui, et al., Characterizing soy sauce moromi manufactured by high-salt dilute-state and low-salt solid-state fermentation using multiphase analyzing methods, J. Food Sci. 81 (2016) C2639-C2646. https://doi.org/10.1111/1750-3841.13516.

[48]

G. Tan, M. Hu, X. Li, et al., Microbial community and metabolite dynamics during soy sauce koji making, Front. Microbiol. 13 (2022) 841529. https://doi.org/10.3389/fmicb.2022.841529.

[49]

D.W. Jeong, S. Heo, J.H. Lee, Safety assessment of Tetragenococcus halophilus isolates from doenjang, a Korean high-salt-fermented soybean paste, Food Microbiol. 62 (2017) 92-98. https://doi.org/10.1016/j.fm.2016.10.012.

[50]

J. Sitdhipol, S. Tanasupawat, P. Tepkasikul, et al., Identification and histamine formation of Tetragenococcus isolated from Thai fermented food products, Ann. Microbiol. 63 (2013) 745-753. http://doi.org/10.1007/s13213-012-0529-1.

[51]

W.L. Xiang, N.D. Zhang, Y. Lu, et al., Effect of Weissella cibaria co-inoculation on the quality of Sichuan Pickle fermented by Lactobacillus plantarum, LWT-Food Sci. Technol. 121 (2020) 108975. https://doi.org/10.1016/j.lwt.2019.108975.

[52]

Y.Z. Yan, Y.L. Qian, F.D. Ji, et al., Microbial composition during Chinese soy sauce koji-making based on culture dependent and independent methods, Food Microbiol. 34 (2013) 189-195. https://doi.org/10.1016/j.fm.2012.12.009.

[53]

R.H. Lülf, R.F. Vogel, M.A. Ehrmann, Microbiota dynamics and volatile compounds in lupine based Moromi fermented at different salt concentrations, Int. J. Food Microbiol. 354 (2021) 109316. https://doi.org/10.1016/j.ijfoodmicro.2021.109316.

[54]

Y. Tanaka, J. Watanabe, Y. Mogi, Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis, Food Microbiol. 31 (2012) 100-106. https://doi.org/10.1016/j.fm.2012.02.005.

[55]

Y. Jia, C.T. Niu, X. Xu, et al., Metabolic potential of microbial community and distribution mechanism of Staphylococcus species during broad bean paste fermentation, Food Res. Int. 148 (2021) 110533. https://doi.org/10.1016/j.foodres.2021.110533.

[56]

Y. Yang, Y. Deng, Y. Jin, et al., Dynamics of microbial community during the extremely long-term fermentation process of a traditional soy sauce, J. Sci. Food Agric. 97 (2017) 3220-3227. https://doi.org/10.1002/jsfa.8169.

[57]

M. Yasir, I.A. Al-Zahrani, F. Bibi, et al., New insights of bacterial communities in fermented vegetables from shotgun metagenomics and identification of antibiotic resistance genes and probiotic bacteria, Food Res. Int. 157 (2022) 111190. https://doi.org/10.1016/j.foodres.2022.111190.

[58]

C. Zhang, J. Zhang, X. Xin, et al., Reduced formation of biogenic amines in low-salt Zhacai via fermentation under CO2-modified atmosphere, Food Res. Int. 163 (2023) 112256. https://doi.org/10.1016/j.foodres.2022.112256.

[59]

F. Özoğul, Production of biogenic amines by Morganella morganii, Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method, Eur. Food Res. Technol. 219 (2004) 465-469. https://doi.org/10.1007/s00217-004-0988-0.

[60]

M.H.S. Santos, Biogenic amines: their importance in foods, Int. J. Food Microbiol. 29 (1996) 213-231. https://doi.org/10.1016/0168-1605(95)00032-1.

[61]

D.W. Jeong, J.H. Lee, Antibiotic resistance, hemolysis and biogenic amine production assessments of Leuconostoc and Weissella isolates for kimchi starter development, LWT-Food Sci. Technol. 64 (2015) 1078-1084. https://doi.org/10.1016/j.lwt.2015.07.031.

[62]

L. Botello-Morte, M. Moniente, Y. Gil-Ramírez, et al., Identification by means of molecular tools of the microbiota responsible for the formation of histamine accumulated in commercial cheeses in Spain, Food Control 133 (2022) 108595. https://doi.org/10.1016/j.foodcont.2021.108595.

Food Science and Human Wellness
Article number: 9250064
Cite this article:
Tan G, Wang Y, Hu M, et al. Insights into the biogenic amine-generating microbes during two different types of soy sauce fermentation as revealed by metagenome-assembled genomes. Food Science and Human Wellness, 2025, 14(3): 9250064. https://doi.org/10.26599/FSHW.2024.9250064
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return