PDF (12.8 MB)
Collect
Submit Manuscript
Show Outline
Figures (11)

Show 2 more figures Hide 2 figures
Tables (2)
Table 1
Table 2
Article | Open Access

Sesamol: a novel quorum sensing inhibitor and colistin accelerator against Pseudomonas aeruginosa

Pengcheng Ji1Kunyuan Yin1Yue JiangYulu SunWenqi LuoJinwei Zhou()
School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, China

1 These authors contributed equally to this work.

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Sesamol reduced virulence factors production and enhance the susceptibility of biofilm cells to colistin.

• Sesamol down-regulated the expressions of genes involved in QS, virulence, and oxidative stress.

• Sesamol intensified oxidative stress and enhanced the permeability of membrane.

• Sesamol treatment resulted in the disorder of amino acid metabolism and energy metabolism.

• Sesamol has the potential to function as a potent anti-virulence agent to defend against spoilage P. aeruginosa.

Graphical Abstract

View original image Download original image

Abstract

We assessed the quorum sensing (QS) inhibitory impact of sesamol against the foodborne bacterium Pseudomonas aeruginosa. At concentrations ranging from 50 to 200 μg/mL, sesamol significantly inhibited the production of virulence factors such as protease, elastase, pyocyanin, rhamnolipid, and chemotaxis, and improved the susceptibility of bacterial and biofilm cells to colistin. Integrated transcriptomics, metabolomics, and docking analyses indicated that exposure to sesamol destroyed the QS system and down-regulated the expressions of genes encoding virulence and antioxidant enzymes. The down-regulation of genes encoding antioxidant enzymes intensified oxidative stress, as demonstrated by the enhancement of reactive oxygen species and H2O2. The enhanced oxidative stress changed the components of the cell membrane, improved its permeability, and ultimately enhanced the susceptibility of bacterial and biofilm cells to colistin. Moreover, exposure to sesamol also led to the disorder of amino acid metabolism and energy metabolism, eventually attenuating the pathogenicity of P. aeruginosa. These findings indicated that sesamol can function as a potent anti-virulence agent to defend against food spoilage caused by P. aeruginosa.

Electronic Supplementary Material

Download File(s)
fshw-14-3-9250075_ESM.docx (32.4 KB)

References

[1]

C.B. Penha, E. Bonin, A.F. da Silva, et al., Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin, LWT-Food Sci. Technol. 76 (2017) 198-202. https://doi.org/10.1016/j.lwt.2016.07.037.

[2]

J.D. Brooks, S.H. Flint, Biofilms in the food industry: problems and potential solutions, Int. J. Food Sci. Tech. 43 (2008) 2163-2176. https://doi.org/10.1111/j.1365-2621.2008.01839.x.

[3]

K. Myszka, A. Olejnik, M. Majcher, et al., Green pepper essential oil as a biopreservative agent for fish-based products: antimicrobial and antivirulence activities against Pseudomonas aeruginosa KM01, LWT-Food Sci. Technol. 108 (2019) 6-13. https://doi.org/10.1016/j.lwt.2019.03.047.

[4]

S. Arslan, A. Eyi, F. Ozdemir, Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses, J. Dairy Sci. 94 (2011) 5851-5856. https://doi.org/10.3168/jds.2011-4676.

[5]

O. Ciofu, T. Tolker-Nielsen, Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics, Front. Microbiol. 10 (2019) 913. https://doi.org/10.3389/fmicb.2019.00913.

[6]

M. Wilton, L. Charron-Mazenod, R. Moore, et al., Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 60 (2016) 544-553. https://doi.org/10.1128/aac.01650-15.

[7]

S.J. Reichler, A. Trmcic, N.H. Martin, et al., Pseudomonas fluorescens group bacterial strains are responsible for repeat and sporadic postpasteurization contamination and reduced fluid milk shelf life, J. Dairy Sci. 101 (2018) 7780-7800. https://doi.org/10.3168/jds.2018-14438.

[8]

S. Ahmed, M. Rudden, T.J. Smyth, et al., Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors, Appl. Microbiol. Biotechnol. 103 (2019) 3521-3535. https://doi.org/10.1007/s00253-019-09618-0.

[9]

M.C. Luciardi, M.A. Blazquez, E. Cartagena, et al., Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa, LWT-Food Sci. Technol. 68 (2016) 373-380. https://doi.org/10.1016/j.lwt.2015.12.056.

[10]

F. Deba, T.D. Xuan, M. Yasuda, et al., Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata, Food Control 19 (2008) 346-352. https://doi.org/10.1016/j.foodcont.2007.04.011.

[11]

R. Mishra, A.K. Panda, S. de Mandal, et al., Natural anti-biofilm agents: strategies to control biofilm-forming pathogens, Front. Microbiol. 11 (2020) 566325. https://doi.org/10.3389/fmicb.2020.566325.

[12]

I.P. Kaur, A. Saini, Sesamol exhibits antimutagenic activity against oxygen species mediated mutagenicity, Mutat. Res. 470 (2000) 71-76. https://doi.org/10.1016/S1383-5718(00)00096-6.

[13]

K.I. Sallam, S.M. Abd-Elghany, K. Imre, et al., Ensuring safety and improving keeping quality of meatballs by addition of sesame oil and sesamol as natural antimicrobial and antioxidant agents, Food Microbiol. 99 (2021) 103834. https://doi.org/10.1016/j.fm.2021.103834.

[14]

S. Sharma, I.P. Kaur, Development and evaluation of sesamol as an antiaging agent, Int. J. Dermatol. 45 (2006) 200-208. https://doi.org/10.1111/j.1365-4632.2004.02537.x.

[15]

M. Uchida, S. Nakajin, S. Toyoshima, et al., Antioxidative effect of sesamol and related compounds on lipid peroxidation, Biol. Pharm. Bull. 19 (1996) 623-626. https://doi.org/10.1248/bpb.19.623.

[16]

J.W. Zhou, H.Z. Luo, H. Jiang, et al., Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa, J. Agric. Food Chem. 66 (2018) 1620-1628. https://doi.org/10.1021/acs.jafc.7b05035.

[17]

J.W. Zhou, T.T. Chen, X.J. Tan, et al., Can the quorum sensing inhibitor resveratrol function as an aminoglycoside antibiotic accelerant against Pseudomonas aeruginosa?, Int. J. Antimicrob. Agents 52 (2018) 35-41. https://doi.org/10.1016/j.ijantimicag.2018.03.002.

[18]

S. Wu, G. Liu, W. Jin, et al., Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa, Front. Microbiol. 7 (2016) 102. https://doi.org/10.3389/fmicb.2016.00102.

[19]

D.E. Ohman, S.J. Cryz, B.H. Iglewski, Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase, J. Bacteriol. 142 (1980) 836-842. https://doi.org/10.1128/jb.142.3.836-842.1980.

[20]

R.D.I. Molina, R. Campos-Silva, M.A. Diaz, et al., Laurel extracts inhibit quorum sensing, virulence factors and biofilm of foodborne pathogens, LWT-Food Sci. Technol. 134 (2020) 109899. https://doi.org/10.1016/j.lwt.2020.109899.

[21]

P. Subhaswaraj, S. Barik, C. Macha, et al., Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1, LWT-Food Sci. Technol. 98 (2018) 661-661. https://doi.org/10.1016/j.lwt.2018.08.011.

[22]

Z. Ding, P.J. Christie, Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type Ⅳ secretion, J. Bacteriol. 185 (2003) 760-771. https://doi.org/10.1128/jb.185.3.760-771.2003.

[23]

M. Mortimer, N. Devarajan, D. Li, et al., Multiwall carbon nanotubes induce more pronounced transcriptomic responses in Pseudomonas aeruginosa PG201 than graphene, exfoliated boron nitride, or carbon black, ACS Nano 12 (2018) 2728-2740. https://doi.org/10.1021/acsnano.7b08977.

[24]

D. Yang, S. Hao, L. Zhao, et al., Paeonol attenuates quorum-sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa, Front. Microbiol. 12 (2021) 692474. https://doi.org/10.3389/fmicb.2021.692474.

[25]

G. Brackman, P. Cos, L. Maes, et al., Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo, Antimicrob. Agents Chemother. 55 (2011) 2655-2661. https://doi.org/10.1128/aac.00045-11.

[26]

J.W. Zhou, P.C. Ji, C.Y. Wang, et al., Anti-virulence activity of dihydrocuminyl aldehyde and nisin against spoilage bacterium Pseudomonas aeruginosa XZ01, LWT-Food Sci. Technol. 177 (2023) 114573. https://doi.org/10.1016/j.lwt.2023.114573.

[27]

H. Chen, P.C. Ji, Y.H. Qi, et al., Inactivation of Pseudomonas aeruginosa biofilms by thymoquinone in combination with nisin, Front. Microbiol. 13 (2022) 1029412. https://doi.org/10.3389/fmicb.2022.1029412.

[28]

T. Chen, J. Sheng, Y. Fu, et al., 1H NMR-based global metabolic studies of Pseudomonas aeruginosa upon exposure of the quorum sensing inhibitor resveratrol, J. Proteome Res. 16 (2017) 824-830. https://doi.org/10.1021/acs. jproteome.6b00800.

[29]

J.W. Zhou, B. Hou, G.Y. Liu, et al., Attenuation of Pseudomonas aeruginosa biofilm by hordenine: a combinatorial study with aminoglycoside antibiotics, Appl. Microbiol. Biotechnol. 102 (2018) 9745-9758. https://doi.org/10.1007/s00253-018-9315-8.

[30]

J.W. Zhou, L.Y. Ruan, H.J. Chen, et al., Inhibition of quorum sensing and virulence in Serratia marcescens by hordenine, J. Agric. Food Chem. 67 (2019) 784-795. https://doi.org/10.1021/acs.jafc.8b05922.

[31]

B. Gonzalez-Flecha, B. Demple, Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli, J. Bacteriol. 179 (1997) 382-388. https://doi.org/10.1128/jb.179.2.382-388.1997.

[32]

Y. Tao, L.H. Qian, J. Xie, Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus, Carbohydr. Polym. 86 (2011) 969-974. https://doi.org/10.1016/j.carbpol.2011.05.054.

[33]

A. Mandabi, H. Ganin, P. Krief, et al., Karrikins from plant smoke modulate bacterial quorum sensing, Chem. Commun. 50 (2014) 5322-5325. https://doi.org/10.1039/C3CC47501H.

[34]

J.W. Zhou, A.Q. Jia, X.J. Tan, et al., 1-(4-Amino-2-hydroxyphenyl) ethenone suppresses Agrobacterium tumefaciens virulence and metabolism, Front. Microbiol. 11 (2020) 584767. https://doi.org/10.3389/fmicb.2020.584767.

[35]

S. Mukherjee, D.A. Moustafa, V. Stergioula, et al., The PqsE and RhlR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E9411-E9418. https://doi.org/10.1073/pnas.1814023115.

[36]

T. Moretro, S. Langsrud, Residential bacteria on surfaces in the food industry and their implications for food safety and quality, Compr. Rev. Food Sci. Food Saf. 16 (2017) 1022-1041. https://doi.org/10.1111/1541-4337.12283.

[37]

X. Li, N. Gu, T.Y. Huang, et al., Pseudomonas aeruginosa: a typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing, Front. Microbiol. 13 (2022) 1114199. https://doi.org/10.3389/fmicb.2022.1114199.

[38]

M.J. Cheesman, A. Ilanko, B. Blonk, et al., Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution?, Pharmacogn. Rev. 11 (2017) 57-72. https://doi.org/10.4103/phrev.phrev_21_17.

[39]

I. Machado, L.R. Silva, E.D. Giaouris, et al., Quorum sensing in food spoilage and natural-based strategies for its inhibition, Food Res. Int. 127 (2020) 108754. https://doi.org/10.1016/j.foodres.2019.108754.

[40]

P. Behzadi, Z. Barath, M. Gajdacs, It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa, Antibiotics 10 (2021) 42. https://doi.org/10.3390/antibiotics10010042.

[41]

G. Inat, B. Siriken, C. Baskan, et al., Quorum sensing systems and related virulence factors in Pseudomonas aeruginosa isolated from chicken meat and ground beef, Sci. Rep. 11 (2021) 15639. https://doi.org/10.1038/s41598-021-94906-x.

[42]

C. O’May, N. Tufenkji, The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials, Appl. Environ. Microbiol. 77 (2011) 3061-3067. https://doi.org/10.1128/AEM.02677-10.

[43]

A. Meliani, A. Bensoltane, Review of Pseudomonas attachment and biofilm formation in food industry, Poult. Fish. Wildl. Sci. 3 (2015) 2-7. https://doi.org/10.4172/2375-446X.1000126.

[44]

M.E. Davey, N.C. Caiazza, G.A. O’Toole, Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1, J. Bacteriol. 185 (2003) 1027-1036. https://doi.org/10.1128/jb.185.3.1027-1036.2003.

[45]

J.W. Zhou, J. Muhammad, B. Sun, et al., Metabolomic analysis of quorum sensing inhibitor hordenine on Pseudomonas aeruginosa, Appl. Microbiol. Biotechnol. 103 (2019) 6271-6285. https://doi.org/10.1007/s00253-019-09878-w.

[46]

K.M. Lee, M.Y. Yoon, Y. Park, et al., Anaerobiosis-induced loss of cytotoxicity is due to inactivation of quorum sensing in Pseudomonas aeruginosa, Infect. Immun. 79 (2011) 2792-2800. https://doi.org/10.1128/iai.01361-10.

Food Science and Human Wellness
Article number: 9250075
Cite this article:
Ji P, Yin K, Jiang Y, et al. Sesamol: a novel quorum sensing inhibitor and colistin accelerator against Pseudomonas aeruginosa. Food Science and Human Wellness, 2025, 14(3): 9250075. https://doi.org/10.26599/FSHW.2024.9250075
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return