PDF (915.6 KB)
Collect
Submit Manuscript
Show Outline
Tables (2)
Table 1
Table 2
Open Access

Amazake (Japanese fermented rice beverage) and its potential health benefits

Klaus W. Langea,b,c()Yukiko Nakamuraa,b,c
Faculty of Human Sciences, University of Regensburg, Regensburg 93040, Germany
Japan Society for Culture, Science and Technology, Regensburg 93040, Germany
Nara Institute of Science and Technology, Ikoma 630-0192, Japan

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Amazake is a sweet and non-alcoholic beverage with a long history in Japan. There are two types of amazake, koji amazake produced from rice koji and sakekasu amazake made from sake lees. Amazake has been suggested to be a functional food with various health benefits and cosmetic effects. The efficacy of both koji amazake and sakekasu amazake in improving bowel movements and defecation has been well studied. Amazake may be useful as a food with constipation relieving effects. Furthermore, beneficial effects of amazake on skin barrier function and skin water content in humans have been well established in randomized controlled trials. The findings of amazake effects on gut microbiota, intestinal environment and gut barrier function, mainly demonstrated in animal models, suggest a role of substances contained in amazake as prebiotics. Preliminary evidence indicates the potential value of amazake in the management of obesity, metabolic syndrome and nonalcoholic fatty liver disease. Long-term and excessive intake tests have demonstrated that the consumption of koji amazake is safe. There are few concerns regarding weight gain or increases in blood sugar levels. The functional compounds and mechanisms involved in the health effects of amazake need to be identified in future research.

References

[1]

S. Yamamoto, S. Matsugo, Functionality of amazake (in Japanese), New Food Industry 50 (2008) 50-54.

[2]
Fuji Keizai Co. Ltd., Foodstuff Marketing Handbook 2021, fourth ed., Fuji Keizai, Tokyo, Japan, 2020, pp. 342-345.
[3]

T. Koizumi, Food and Japanese Wisdom, J. Jpn. Assoc. Rural Med. 61 (2013) 839-854.

[4]

K. Aso, T. Watanabe, Y. Hanno, et al., On the sugar composition of Amasake (a sweet sugary liquor made from rice), Tohoku J. Agric. Res. 13 (1962) 257-264.

[5]
H. Murakami, Study of koji (in Japanese), Nihon Jyouzou Kyoukai, Tokyo, 1986.
[6]
M. Nakano, Fermented foods (in Japanese), Korin Syoin, 1967.
[7]
K. Yamashita, The power of koji amazake for your health: enjoy this traditional drink year-round (in Japanese), Shougakkan, Tokyo, 2009.
[8]
Y. Kagawa, Table of food composition fifth revised and enlarged edition (in Japanese), Kagawa Nutrition Publishing Division, Tokyo, 2009.
[9]

A. Kurahashi, Ingredients, functionality, and safety of the Japanese traditional sweet drink amazake, J. Fungi (Basel) 7 (2021) 469. https://doi.org/10.3390/jof7060469.

[10]

A. Kurahashi, Y. Oguro, Ingredients in koji amazake, J. Jpn. Assoc. Rural Med. (2017) 668-674.

[11]

Y. Oguro, T. Nishiwaki, R. Shinada, et al., Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA, J. Biosci. Bioeng. 124 (2017) 178-183. https://doi.org/10.1016/j.jbiosc.2017.03.011.

[12]

R. Tukiyama, T. Maeda, K. Miyashita, et al., Components in Amazake (Part 2) amino acids, organic acids composition, and other composition, J. Jpn. Soy Sauce Res. Inst. 3 (1977) 205-209.

[13]

S. Fukui, Y. Tani, T. Kishibe, Studies on the role of B-vitamins in sake-brewing (Ⅵ): changes of the amounts of several B-vitamins in the process of koji-manufacture (in Japanese), J. Ferment. Technol. (1955) 239-242.

[14]

E. Da Lee, S. Lee, E. S. Jang, et al., Metabolomic profiles of Aspergillus oryzae and Bacillus amyloliquefaciens during rice koji fermentation, Molecules 21 (2016) 773. https://doi.org/10.3390/molecules21060773.

[15]

M. Sakamoto, J. Ferdouse, M. Sakatani, et al., Development of a quantitative method for the contents of glycosylceramide contained in Japanese foods brewed with koji and its application (in Japanese), J. Brew. Soc. Jpn. 112 (2017) 655-662.

[16]

N. Saigusa, R. Ohba, Effects of koji production and saccharification time on the antioxidant activity of amazake, Food Sci. Technol. Res. 13 (2007) 162-165. https://doi.org/10.3136/fstr.13.162.

[17]

T. Watanabe, Ingredients in “Sake Cake” contribute to healthy and beauty, J. Brew. Soc. Jpn. 107 (2012) 282-291.

[18]

T. Imanari, Z. Tamamura, The identification of α-ethyl glucoside and sugar alcohol in sake, Agric. Biol. Chem. 35 (1971) 321-324.

[19]
Soy Sauce Information Center, Soysauce scientific reports (in Japanese), Soy Sauce Information Center, Tokyo, 2004.
[20]
Japan Miso Promotion Board, Miso News Letter (in Japanese), Japan Miso Promotion Board, Tokyo, 1999.
[21]

T. Ohta, H. Takashita, K. Todoroki, et al., Antioxidative substances in sake (in Japanese), J. Brew. Soc. Jpn. 87 (1992) 922-926.

[22]

T. Ishizaki, Y. Yoshihama, J. Hiramatu, et al., On antioxidative activities of hon-mirin (in Japanese), J. Brew. Soc. Jpn. 101 (2006) 839-849.

[23]

M. Sakurai, M. Kubota, A. Iguchi, et al., Effects of Koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA on defecation status in healthy volunteers with relatively low stool frequency, Food Sci. Technol. Res. 25 (2019) 853-861. https://doi.org/10.3136/fstr.25.853.

[24]

A. Kurahashi, T. Enomoto, Y. Oguro, et al., Intake of Koji Amazake improves defecation frequency in healthy adults, J. Fungi (Basel) 7 (2021) 782. https://doi.org/10.3390/jof7090782.

[25]

K. Sumiyoshi, M. Nakao, Effect of Amazake ingestion on constipation, Jpn. J. Nurs. Art Sci. 16 (2017) 36-40.

[26]

R. Inoue, M. Ayabe, S. Hiramatsu, et al., Malted rice amazake ingestion changes constipation and microbiota in independently living older adults, J. Jpn. Soc. Clin. Nutr. 42 (2020) 54-65.

[27]

R. Inoue, S. Kageyama, T. Suka, et al., Changes in constipation symptoms associated with ingestion of malted-rice ‘amazake’ for 6 weeks in home-care patients with severe motor and intellectual disabilities (in Japanese), J. Child Health 81 (2022) 1.

[28]

S. Kageyama, R. Inoue, K. Hosomi, et al., Effects of malted rice Amazake on constipation symptoms and gut microbiota in children and adults with severe motor and intellectual disabilities: a pilot study, Nutrients 13 (2021) 4466. https://doi.org/10.3390/nu13124466.

[29]

S. Mori, Y. Tanaka, K. Watabe, et al., Amazake using the lees and rice Koji promotes regular bowel movements: a randomized, placebo-controlled parallel-group comparison study (in Japanese), Jpn. Pharmacol. Ther. 47 (2019) 759-765.

[30]

S. Mori, M. Morita, T. Matsuo, Effect of oral intake of Amazake containing Sake lee and rice Koji on the human intestinal microbiota of Amazake: a randomized placebo-controlled crossover comparison study (in Japanese), Jpn. Pharmacol. Ther. 48 (2020) 1187-1193.

[31]

H. Maruki-Uchida, M. Sai, S. Yano, et al., Amazake made from sake cake and rice koji suppresses sebum content in differentiated hamster sebocytes and improves skin properties in humans, Biosci. Biotechnol. Biochem. 84 (2020) 1689-1695. https://doi.org/10.1080/09168451.2020.1756734.

[32]

H. Hamajima, H. Matsunaga, A. Fujikawa, et al., Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic, Springerplus 5 (2016) 1321. https://doi.org/10.1186/s40064-016-2950-6.

[33]

S. Kawakami, R. Ito, H. Maruki-Uchida, et al., Intake of a mixture of Sake cake and rice malt increases mucin levels and changes in intestinal microbiota in mice, Nutrients 12 (2020) 449. https://doi.org/10.3390/nu12020449.

[34]

A. Kurahashi, A. Nakamura, Y. Oguro, et al., Beneficial effects of koji amazake in suppressing the postprandial increase in blood glucose and insulin levels in healthy adults (in Japanese), J. Brew. Soc. Jpn. 115 (2020) 43-53.

[35]

H. Hamajima, M. Tanaka, M. Miyagawa, et al., Koji glycosylceramide commonly contained in Japanese traditional fermented foods alters cholesterol metabolism in obese mice, Biosci. Biotechnol. Biochem. 83 (2019) 1514-1522. https://doi.org/10.1080/09168451.2018.1562877.

[36]

S. Oura, S. Suzuki, Y. Hata, et al., Evaluation of physiological functionalities of amazake in mice (in Japanese), J. Brew. Soc. Jpn. 102 (2007) 781-788.

[37]

Y. Nagao, H. Takahashi, A. Kawaguchi, et al., Effect of fermented rice drink “Amazake” on patients with nonalcoholic fatty liver disease and periodontal disease: a pilot study, Reports 4 (2021) 36. https://doi.org/10.3390/reports4040036.

[38]

Y. Saito, K. Wanezaki, A. Kawato, et al., Antihypertensive effects of peptide in sake and its by-products on spontaneously hypertensive rats, Biosci. Biotechnol. Biochem. 58 (1994) 812-816. https://doi.org/10.1271/bbb.58.812.

[39]

M. Ueda, M. Kitagawa, S. Koike, et al., Effect of intake of amazake on skin barrier functions in healthy adult women subjects: a randomized, double-blind, placebo-controlled study, Jpn. Pharmacol. Ther. 45 (2017) 1811-1820.

[40]

T. Enomoto, A. Kojima-Nakamura, K. Kodaira, et al., Koji amazake maintains water content in the left cheek skin of healthy adults: a randomized, double-blind, placebo-controlled, parallel-group, comparative trial, Clin. Cosmet. Investig. Dermatol. 15 (2022) 1283-1291. https://doi.org/10.2147/CCID.S366979.

[41]

A. Kurahashi, A. Nakamura, Y. Oguro, et al., Safety evaluation of a long-term intake of koji amazake, J. Brew. Soc. Jpn. 115 (2020) 159-172.

[42]

Kitagaki H., Transition of the DPPH-scavenging ability of sake during brewing, J. Brew. Soc. Jpn. 98 (2003) 589-593.

[43]

Y. Miyake, M. Mochizuki, C. Ito, et al., Antioxidative pyranonigrins in rice mold starters and their suppressive effect on the expression of blood adhesion molecules, Biosci. Biotechnol. Biochem. 72 (2008) 1580-1585. https://doi.org/10.1271/bbb.80077.

[44]

S. Yamamoto, Y. Nakashima, J. Yoshikawa, et al., Radical scavenging activity of the Japanese traditional food, Amazake, Food Sci. Technol. Res. 17 (2011) 209-218. https://doi.org/10.3136/fstr.17.209.

[45]

N. Wada, T. Sakamoto, S. Matsugo, Liposoluble antioxidative components in Japanese traditional fermented food “Amazake” made from brown rice, J. Bioprocess Biotech. 8(1) (2018) 1000317. https://doi.org/10.4172/2155-9821.1000317.

[46]

H. Maruki-Uchida, M. Sai, K. Sekimizu, Evaluation of the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay, Drug Discov. Ther. 11 (2017) 288-290. https://doi.org/10.5582/ddt.2017.01051.

[47]

Y. Nagao, M. Sata, Effect of a late evening snack of Amazake in patients with liver cirrhosis: a pilot study, J. Nutr. Food Sci. 3 (2013) 1000223. https://doi.org/10.4172/2155-9600.1000223.

[48]

O. Kashimura, Y. Uehara, A. Shimazaki, Effects of amazake using rice koji intake in sports athletes on physical fatigue and subjective symptoms during exercise training (in Japanese), Jpn. J. Sport Health Sci. 6 (2019) 37-48.

[49]

T. Kaneko, T. Kohmoto, H. Kikuchi, et al., Effects of isomaltooligosaccharides intake on defecation and intestinal environment in healthy volunteers (in Japanese), J. Home Econ. Jpn. 44 (1993) 245-254.

[50]

C.H. Yen, Y.H. Tseng, Y.W. Kuo, et al., Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people: a placebo-controlled, diet-controlled trial, Nutrition 27 (2011) 445-450. https://doi.org/10.1016/j.nut.2010.05.012.

[51]

S.K. Park, M.S. Kim, J.W. Bae, Blautia faecis sp. nov., isolated from human faeces, Int. J. Syst. Evol. Microbiol. 63 (2013) 599-603.

[52]

J.S. Bajaj, P.B. Hylemon, J.M. Ridlon, et al., Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation, Am. J. Physiol. Gastrointest. Liver Physiol. 303 (2012) G675-G685. https://doi.org/10.1152/ajpgi.00152.2012.

[53]

R.R. Jenq, C. Ubeda, Y. Taur, et al., Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation, J. Exp. Med. 209 (2012) 903-911. https://doi.org/10.1084/jem.20112408.

[54]

W. Chen, F. Liu, Z. Ling, et al., Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer, PLoS One 7 (2012) e39743. https://doi.org/10.1371/journal.pone.0039743.

[55]

H.B. Mabrok, R. Klopfleisch, K.Z. Ghanem, et al., Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer, Carcinogenesis 33 (2012) 203-208. https://doi.org/10.1093/carcin/bgr256.

[56]

M. Murri, I. Leiva, J.M. Gomez-Zumaquero, et al., Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study, BMC Med. 11 (2013) 46. https://doi.org/10.1186/1741-7015-11-46.

[57]

M. Rajilić-Stojanović, E. Biagi, H.G.H.J. Heilig, et al., Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome, Gastroenterology 141 (2011) 1792-1801. https://doi.org/10.1053/j.gastro.2011.07.043.

[58]

J.S. Suchodolski, M.E. Markel, J.F. Garcia-Mazcorro, et al., The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease, PLoS ONE 7 (2012) e51907. https://doi.org/10.1371/journal.pone.0051907.

[59]

M. van der Sluis, B.A.E. de Koning, A.C.J.M. de Bruijn, et al., Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection, Gastroenterology 131 (2006) 117-129. https://doi.org/10.1053/j.gastro.2006.04.020.

[60]

A. Trompette, J. Claustre, F. Caillon, et al., Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum, J. Nutr. 133 (2003) 3499-3503. https://doi.org/10.1093/jn/133.11.3499.

[61]

T. Taira, S. Yamaguchi, A. Takahashi, et al., Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet, J. Clin. Biochem. Nutr. 57 (2015) 212-216. https://doi.org/10.3164/jcbn.15-15.

[62]

H. Ito, T. Wada, M. Ohguchi, et al., The degree of polymerization of inulin-like fructans affects cecal mucin and immunoglobulin A in rats, J. Food Sci. 73 (2008) H36-H41. https://doi.org/10.1111/j.1750-3841.2008.00686.x.

[63]

A. Shimotoyodome, S. Meguro, T. Hase, et al., Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon, Comp. Biochem. Physiol. A Mol. Integr. Physiol. 125 (2000) 525-531. https://doi.org/10.1016/s1095-6433(00)00183-5.

[64]

Y. Ishida, T. Sadakiyo, S. Inoue, et al., The attenuating effect of isomaltodextrin on postprandial blood glucose level in healthy human subjects: a randomized, placebo-controlled, double-blind crossover study, Jpn. Pharmacol. Ther. 45 (2017) 1179-1185.

[65]

J. Kashimura, Y. Nagai, Inhibitory effect of palatinose on glucose absorption in everted rat gut, J. Nutr. Sci. Vitaminol. (Tokyo) 53 (2007) 87-89. https://doi.org/10.3177/jnsv.53.87.

[66]

K.W. Lange, J. Hauser, Y. Nakamura, et al., Dietary seaweeds and obesity, Food Sci. Hum. Wellness 4 (2015) 87-96. https://doi.org/10.1016/j.fshw.2015.08.001.

[67]

J.W. Yun, Possible anti-obesity therapeutics from nature: a review, Phytochemistry 71 (2010) 1625-1641. https://doi.org/10.1016/j.phytochem.2010.07.011.

[68]

N.R. Sahyoun, P.F. Jacques, X.L. Zhang, et al., Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults, Am. J. Clin. Nutr. 83 (2006) 124-131. https://doi.org/10.1093/ajcn/83.1.124.

[69]

Y. Akamine, J.F. Millman, T. Uema, et al., Fermented brown rice beverage distinctively modulates the gut microbiota in Okinawans with metabolic syndrome: a randomized controlled trial, Nutr. Res. 103 (2022) 68-81. https://doi.org/10.1016/j.nutres.2022.03.013.

[70]

S. Coppola, C. Avagliano, A. Calignano, et al., The protective role of butyrate against obesity and obesity-related diseases, Molecules 26 (2021) 682. https://doi.org/10.3390/molecules26030682.

[71]

H. Wu, V. Tremaroli, C. Schmidt, et al., The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study, Cell Metab. 32 (2020) 379-390.e3. https://doi.org/10.1016/j.cmet.2020.06.011.

[72]

P. Guo, K. Zhang, X. Ma, et al., Clostridium species as probiotics: potentials and challenges, J. Anim. Sci. Biotechnol. 11 (2020) 24. https://doi.org/10.1186/s40104-019-0402-1.

[73]

Z.H. Shen, C.X. Zhu, Y.S. Quan, et al., Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation, World J. Gastroenterol. 24 (2018) 5-14. https://doi.org/10.3748/wjg.v24.i1.5.

[74]

R.E. Ley, P.J. Turnbaugh, S. Klein, et al., Microbial ecology: human gut microbes associated with obesity, Nature 444 (2006) 1022-1023. https://doi.org/10.1038/4441022a.

[75]

A. Schwiertz, D. Taras, K. Schäfer, et al., Microbiota and SCFA in lean and overweight healthy subjects, Obesity 18 (2010) 190-195. https://doi.org/10.1038/oby.2009.167.

[76]

N. Kassaian, A. Feizi, S. Rostami, et al., The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: a double blind randomized clinical trial, Nutrition 79-80 (2020) 110854. https://doi.org/10.1016/j.nut.2020.110854.

[77]

D. Fernandez-Raudales, J.L. Hoeflinger, N.A. Bringe, et al., Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men, Gut Microbes 3 (2012) 490-500. https://doi.org/10.4161/gmic.21578.

[78]

Z.M. Younossi, A.B. Koenig, D. Abdelatif, et al., Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes, Hepatology 64 (2016) 73-84. https://doi.org/10.1002/hep.28431.

[79]

H.B. El-Serag, T. Tran, J.E. Everhart, Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma, Gastroenterology 126 (2004) 460-468. https://doi.org/10.1053/j.gastro.2003.10.065.

[80]

M. Koda, M. Kawakami, Y. Murawaki, et al., The impact of visceral fat in nonalcoholic fatty liver disease: cross-sectional and longitudinal studies, J. Gastroenterol. 42 (2007) 897-903. https://doi.org/10.1007/s00535-007-2107-z.

[81]

M. Yoneda, S. Naka, K. Nakano, et al., Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease, BMC Gastroenterol. 12 (2012) 16. https://doi.org/10.1186/1471-230X-12-16.

[82]

S. Hirakawa, A. Sato, Y. Hattori, et al., Dietary rice bran extract improves TEWL of whole body, Jpn. Pharmacol. Ther. 41 (2013) 1051-1059.

[83]

S. Asai, H. Miyachi, Evaluation of skin-moisturizing effects of oral or percutaneous use of plant ceramides (in Japanese), Rinsho Byori 55 (2007) 209-215.

[84]

T. Uchiyama, Y. Nakano, O. Ueda, et al., Oral intake of glucosylceramide improves relatively higher level of transepidermal water loss in mice and healthy human subjects, J. Health Sci. 54 (2008) 559-566. https://doi.org/10.1248/jhs.54.559.

[85]

M. Hori, S. Kishimoto, Y. Tezuka, et al., Double-blind study on effects of glucosyl ceramide in beet extract on skin elasticity and fibronectin production in human dermal fibroblasts, Anti-Aging Med. 7 (2010) 129-142. https://doi.org/10.3793/jaam.7.129.

[86]

K. Shibata, R. Tsubouchi, Clinical effects of N-acetylglucosamine supplementation on dry skin, Aesthetic Dermatol. 18 (2008) 91-99.

[87]

Y.C. Hseu, Y. Vudhya Gowrisankar, X.Z. Chen, et al., The antiaging activity of ergothioneine in UVA-irradiated human dermal fibroblasts via the inhibition of the AP-1 pathway and the activation of Nrf2-mediated antioxidant genes, Oxid. Med. Cell. Longev. 2020 (2020) 2576823. https://doi.org/10.1155/2020/2576823.

[88]

C. Kawada, T. Hasegawa, M. Watanabe, et al., Dietary glucosylceramide enhances tight junction function in skin epidermis via induction of claudin-1, Biosci. Biotechnol. Biochem. 77 (2013) 867-869. https://doi.org/10.1271/bbb.120874.

[89]

Y. Shirakura, K. Kikuchi, K. Matsumura, et al., 4,8-Sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin, Lipids Health Dis. 11 (2012) 108. https://doi.org/10.1186/1476-511X-11-108.

[90]

M. Miyagawa, A. Fujikawa, M. Nagadome, et al., Glycosylceramides purified from the Japanese traditional non-pathogenic fungus Aspergillus and koji increase the expression of genes involved in tight junctions and ceramide delivery in normal human epidermal keratinocytes, Fermentation 5 (2019) 43. https://doi.org/10.3390/fermentation5020043.

[91]

R. Ideta, T. Sakuta, Y. Nakano, et al., Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation, Biosci. Biotechnol. Biochem. 75 (2011) 1516-1523. https://doi.org/10.1271/bbb.110215.

[92]

M. Yeom, S.H. Kim, B. Lee, et al., Oral administration of glucosylceramide ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear, J. Dermatol. Sci. 67 (2012) 101-110. https://doi.org/10.1016/j.jdermsci.2012.05.009.

[93]

L.C. La Poulsen, M. Siersbæk, S. Mandrup, PPARs: fatty acid sensors controlling metabolism, Semin. Cell Dev. Biol. 23 (2012) 631-639. https://doi.org/10.1016/j.semcdb.2012.01.003.

[94]

H. Takahashi, H.Y. Chi, S. Mohri, et al., Rice koji extract enhances lipid metabolism through proliferator-activated receptor alpha (PPARα) activation in mouse liver, J. Agric. Food Chem. 64 (2016) 8848-8856. https://doi.org/10.1021/acs.jafc.6b03516.

[95]

X. Li, C. He, Z. Chen, et al., A review of the role of sebum in the mechanism of acne pathogenesis, J. Cosmet. Dermatol. 16 (2017) 168-173. https://doi.org/10.1111/jocd.12345.

[96]

S. Wilczyński, A. Stolecka-Warzecha, A. Deda, et al., In vivo dynamic thermal imaging of skin radiofrequency treatment, J. Cosmet. Dermatol. 18 (2019) 1307-1316. https://doi.org/10.1111/jocd.12775.

[97]

H. Izu, S. Shibata, T. Fujii, et al., Sake cake (sake-kasu) ingestion increases branched-chain amino acids in the plasma, muscles, and brains of senescence-accelerated mice prone 8, Biosci. Biotechnol. Biochem. 83 (2019) 1490-1497. https://doi.org/10.1080/09168451.2019.1621155.

[98]

F. Costa, I. Biaggioni, Role of nitric oxide in adenosine-induced vasodilation in humans, Hypertension 31 (1998) 1061-1064. https://doi.org/10.1161/01.hyp.31.5.1061.

[99]

Q. Zhu, X. Yue, Q.Y. Tian, et al., Effect of L-arginine supplementation on blood pressure in pregnant women: a meta-analysis of placebo-controlled trials, Hypertens. Pregnancy 32 (2013) 32-41. https://doi.org/10.3109/10641955.2012.697952.

[100]

K.J. Petzke, H. Boeing, S. Klaus, et al., Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans, J. Nutr. 135 (2005) 1515-1520. https://doi.org/10.1093/jn/135.6.1515.

[101]

S. Dhital, H. Hamamoto, M. Urai, et al., Purification of innate immunostimulant from green tea using a silkworm muscle contraction assay, Drug Discov. Ther. 5 (2011) 18-25. https://doi.org/10.5582/ddt.v5.1.18.

[102]

K. Sekimizu, H. Hamamoto, Using silkworms as a laboratory animal to evaluate medicines and foods, Drug Discov. Ther. 10 (2016) 1-2. https://doi.org/10.5582/ddt.2016.01018.

[103]

K. Matsumoto, T. Koba, K. Hamada, et al., Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program, J. Sports Med. Phys. Fitness 49 (2009) 424-431.

[104]

A. Kurahashi, Y. Yonei, Effects and safety of koji amazake: an excessive intake test, J. Brew. Soc. Jpn. 115 (2020) 654-662.

[105]

S. Ui, Fundamental studies on the food poisoning by Amasake. Ⅰ. Epidemiological investigation on the Amasake food poisoning (in Japanese), Jpn. J. Hyg. 14 (1959) 707-712. https://doi.org/10.1265/jjh.14.707.

[106]

S. Ui, Fundamental Studies on the Food Poisoning by Amasake. Ⅱ. Food-sanitation on Amasake (in Japanese), Jpn. J. Hyg. 14 (1959) 713-716. https://doi.org/10.1265/jjh.14.713.

[107]

S. Ui, Fundamental studies on the food poisoning by Amasake. Ⅲ. Growth of Bacteria in Amasake (in Japanese), Jpn. J. Hyg. 14 (1959) 717-723. https://doi.org/10.1265/jjh.14.717.

[108]
Functional food and beverage market size, 2021-2028. Available online: https://www.fortunebusinessinsights.com/functional-foods-market-102269.
[109]

M. Verni, C. Demarinis, C.G. Rizzello, et al., Design and characterization of a novel fermented beverage from lentil grains, Foods 9 (2020) 893. https://www.mdpi.com/2304-8158/9/7/893.

[110]

M. Manzoor, D. Singh, G.K. Aseri, et al., Role of lacto-fermentation in reduction of antinutrients in plant-based foods. J. Appl. Biol. Biotech. 9 (2021) 7-16. https://jabonline.in/abstract.php?article_id=575&sts=2.

[111]

A. Durazzo, M. Carocho, S.A. Heleno, et al., Fermented food/beverage and health: current perspectives. Rend. Fis. Acc. Lincei 33 (2022) 729-738. https://link.springer.com/article/10.1007/s12210-022-01093-6.

[112]

M. Vitali, M. Gandía, G. Garcia-Llatas, et al., Exploring the potential of rice, tiger nut and carob for the development of fermented beverages in Spain: A comprehensive review on the production methodologies worldwide. Beverages 9 (2023) 47. https://doi.org/10.3390/beverages9020047.

[113]

I.A.H. Ahmad Hanis, S. Jinap, S. Mad Nasir, et al., Consumers’ demand and willingness to pay for rice attributes in Malaysia. Int. Food Res. J. 19 (2012) 363-369.

[114]

V. Owusu, E. Owusu-Sekyere, E. Donkor, et al., Consumer perceptions and willingness to pay for cassava-wheat composite bread in Ghana: a hedonic pricing approach, J. Agribusiness Dev. Emerg. Econ 7 (2017) 115-134. https://www.emerald.com/insight/content/doi/10.1108/JADEE-11-2014-0044/full/html.

Food Science and Human Wellness
Article number: 9250076
Cite this article:
Lange KW, Nakamura Y. Amazake (Japanese fermented rice beverage) and its potential health benefits. Food Science and Human Wellness, 2025, 14(1): 9250076. https://doi.org/10.26599/FSHW.2024.9250076
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return