Food contaminants, particularly insecticides, are important factors contributing to obesity and other adverse effects. As the most widely used diamide insecticide worldwide, chlorantraniliprole (CP) is ubiquitous in food and the environment. However, the influence of CP on obesity and the gut microbiota remains unknown. In this study, we administered CP/carboxymethyl cellulose sodium to C57BL/6J mice with a high-fat diet (HFD) via gavage for 13 weeks. The CP exposure induced significant increases in body weight gain, fat mass, serum total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Moreover, CP aggravated the imbalance in the gut microbiota by increasing the relative abundance of obesity-associated bacteria and reducing the relative abundance of beneficial bacteria. Based on untargeted metabolomics analysis, CP was found to be involved in the regulation of pathways including Alanine, aspartate and glutamate metabolism and Arginine and proline metabolism. Notably, CP exposure primarily induced alterations in microbial metabolites within these pathways, such as L-(+)-aspartic acid and L-glutamic acid. Additionally, individual metabolites, such as the lipid mediator (oleoyl ethanolamide), also demonstrated alterations upon CP exposure. Furthermore, Spearman correlation analysis revealed several noteworthy associations between microbial alterations, metabolite changes, and phenotypes. The results of the study demonstrate a connection between microbiota, metabolites, and the effects of CP exposure on HFD-induced obesity, elucidating the critical role of the gut microbiota and its metabolites in the toxic effects of CP.
R.M. Gutgesell, E.E. Tsakiridis, S. Jamshed, et al., Impact of pesticide exposure on adipose tissue development and function, Biochem. J. 477(14) (2020) 2639-2653. https://doi.org/10.1042/BCJ20200324.
N. Chevalier, P. Fenichel, Obesite, diabete de type 2 et perturbateurs endocriniens, Presse. Med. 45(1) (2016) 88-97. https://doi.org/10.1016/j.lpm.2015.08.008.
Z. Meng, S. Yan, W. Sun, et al., Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids metabolism via FXR pathways, J. Hazard. Mater. 452 (2023). https://doi.org/10.1016/j.jhazmat.2023.131310.
D.H. Lee, Persistent organic pollutants and obesity-related metabolic dysfunction: focusing on type 2 diabetes, Epidemiol. Health. 34 (2012) 1-3. https://doi.org/10.4178/epih/e2012002.
N.E. De Long, A.C. Holloway, Early-life chemical exposures and risk of metabolic syndrome, Diabetes, Metab. Syndr. Obes. 10 (2017) 101-109. https://doi.org/10.2147/dmso.S95296.
Q. Liu, W. Shao, C. Zhang, et al., Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice, Environ. Pollut. 226 (2017) 268-276. https://doi.org/10.1016/j.envpol.2017.03.068.
X. Xiao, J.M. Clark, Y. Park, Potential contribution of insecticide exposure and development of obesity and type 2 diabetes, Food. Chem. Toxicol. 105 (2017) 456-474. https://doi.org/10.1016/j.fct.2017.05.003.
V. Gaddamidi, M.T. Scott, R.S. Swain, et al., Metabolism of C-14 chlorantraniliprole in the lactating goat, J. Agric. Food. Chem. 59(4) (2011) 1316-1323. https://doi.org/10.1021/jf103558n.
G.P. Lahm, D. Cordova, J.D. Barry, New and selective ryanodine receptor activators for insect control, Bioorg. Med. Chem. 17(12) (2009) 4127-4133. https://doi.org/10.1016/j.bmc.2009.01.018.
G. Chen, G. Wang, W. Xu, et al., Transcriptome analysis of fat accumulation in 3T3-L1 adipocytes induced by chlorantraniliprole, Front. Nutr. 9 (2022). https://doi.org/10.3389/fnut.2022.1091477.
L. Yuan, J. Lin, Y. Peng, et al., Chlorantraniliprole induces adipogenesis in 3T3-L1 adipocytes via the AMPKalpha pathway but not the ER stress pathway, Food. Chem. 311 (2020) 125953. https://doi.org/10.1016/j.foodchem.2019.125953.
L. Li, Y. Zhang, J.R. Speakman, et al., The gut microbiota and its products: establishing causal relationships with obesity related outcomes, Obes. Rev. 22(12) (2021). https://doi.org/10.1111/obr.13341.
J.K. Jo, S.H. Seo, S.E. Park, et al., Gut microbiome and metabolome profiles associated with high-fat diet in mice, Metabolites 11(8) (2021) 482. https://doi.org/10.3390/metabo11080482.
J. Liu, F. Zhao, T. Wang, et al., Host metabolic disorders induced by alterations in intestinal flora under dietary pesticide exposure, J. Agric. Food. Chem. 69(22) (2021) 6303-6317. https://doi.org/10.1021/acs.jafc.1c00273.
X. Yuan, Z. Pan, C. Jin, et al., Gut microbiota: an underestimated and unintended recipient for pesticide-induced toxicity, Chemosphere 227 (2019) 425-434. https://doi.org/10.1016/j.chemosphere.2019.04.088.
Y. Jin, S. Wu, Z. Zeng, et al., Effects of environmental pollutants on gut microbiota, Environ. Pollut. 222 (2017) 1-9. https://doi.org/10.1016/j.envpol.2016.11.045.
European Food Safety Authority, Conclusion on the peer review of the pesticide risk assessment of the active substance chlorantraniliprole, EFSA J. 2013. 11(6) (2013) 3143. https://doi.org/10.2903/j.efsa.2013.3143.
B.N. Liu, X.T. Liu, Z.H. Liang, et al., Gut microbiota in obesity, World. J. Gastroenterol. 27(25) (2021) 3837-3850. https://doi.org/10.3748/wjg.v27.i25.3837.
Q. Sun, J. Lin, Y. Peng, et al., Flubendiamide enhances adipogenesis and inhibits AMPKα in 3T3-L1 Adipocytes, Molecules 23(11) (2018) 2950. https://doi.org/10.3390/molecules23112950.
J. Kim, J.H. Choi, T. Oh, et al., Codium fragile ameliorates high-fat diet-induced metabolism by modulating the gut microbiota in mice, Nutrients 12(6) (2020). https://doi.org/10.3390/nu12061848.
Y. Gupta, A.L. Ernst, A. Vorobyev, et al., Impact of diet and host genetics on the murine intestinal mycobiome, Nat. Commun. 14(1) (2023) 834. https://doi.org/10.1038/s41467-023-36479-z.
Y.T. Chen, S.Y. Chiou, A.H. Hsu, et al., Lactobacillus rhamnosus strain LRH05 intervention ameliorated body weight gain and adipose inflammation via modulating the gut microbiota in high-fat diet-induced obese mice, Mol. Nutr. Food. Res. 66(1) (2022) 348. https://doi.org/10.1002/mnfr.202100348.
L. Zhu, J. Fu, X. Xiao, et al., Faecal microbiota transplantation-mediated jejunal microbiota changes halt high-fat diet-induced obesity in mice via retarding intestinal fat absorption, Microb. Biotechnol. 15(1) (2022) 337-352. https://doi.org/10.1111/1751-7915.13951.
Z. Lv, C. Zhang, W. Song, et al., Jellyfish collagen hydrolysate alleviates inflammation and oxidative stress and improves gut microbe composition in high-fat diet-fed mice, Mediators. Inflamm. 2022 (2022) 1-8. https://doi.org/10.1155/2022/5628702.
J. Kim, H. Lee, J. An, et al., Alterations in gut microbiota by statin therapy and possible intermediate effects on hyperglycemia and hyperlipidemia, Front. Microbiol. 10 (2019) 1947. https://doi.org/10.3389/fmicb.2019.01947.
Q. Zeng, D. Li, Y. He, et al., Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities, Sci. Rep. 9 (2019) 13424. https://doi.org/10.1038/s41598-019-49462-w.
H. Mei, N. Li, Y. Zhang, et al., Gut microbiota diversity and overweight/obesity in infancy: results from a nested case-control study, Curr. Med. Sci. 42(1) (2022) 210-216. https://doi.org/10.1007/s11596-021-2476-1.
M. Li, Z. Zhang, B. Yu, et al., Lycium barbarum oligosaccharides alleviate hepatic steatosis by modulating gut microbiota in C57BL/6J mice fed a high-fat diet, Foods 12(8) (2023) 1617. https://doi.org/10.3390/foods12081617.
Z.M. Zhang, M.J. Chen, J.F. Zou, et al., UPLC-Q-TOF/MS based fecal metabolomics reveals the potential anti-diabetic effect of Xiexin decoction on T2DM rats, J. Chromatogr. B 1173 (2021) 122683. https://doi.org/10.1016/j.jchromb.2021.122683.
C. Takashina, I. Tsujino, T. Watanabe, et al., Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japanese adults with normal glucose tolerance, Nutr. Metab. 13(1) (2016) 5. https://doi.org/10.1186/s12986-015-0059-5.
I. Maltais-Payette, B. Allam-Ndoul, L. Perusse, et al., Circulating glutamate level as a potential biomarker for abdominal obesity and metabolic risk, Nutr. Metab. Cardiovasc. Dis. 29(12) (2019) 1353-1360. https://doi.org/10.1016/j.numecd.2019.08.015.
D. Xie, Y. Zhang, Y. Guo, et al., The impact of high-glucose or high-fat diets on the metabolomic profiling of mice, Front. Nutr. 10 (2023) 1171806. https://doi.org/10.3389/fnut.2023.1171806.
K. Shan, H. Qu, K. Zhou, et al., Distinct gut microbiota induced by different fat-to-sugar-ratio high-energy diets share similar pro-obesity genetic and metabolite profiles in prediabetic mice, mSystems 4(5) (2019) e00219-19. https://doi.org/10.1128/mSystems.00219-19.
N.M. Ammar, M.A. Farag, T.E. Kholeif, et al., Serum metabolomics reveals the mechanistic role of functional foods and exercise for obesity management in rats, J. Pharm. Biomed. Anal. 142 (2017) 91-101. https://doi.org/10.1016/j.jpba.2017.05.001.
R. Ikegami, I. Shimizu, T. Sato, et al., Gamma-aminobutyric acid signaling in brown adipose tissue promotes systemic metabolic derangement in obesity, Cell. Rep. 24(11) (2018) 2827. https://doi.org/10.1016/j.celrep.2018.08.024.
K. SHIBATA, Urinary excretion of 2-oxo acids is greater in rats with streptozotocin-induced diabetes, J. Nutr. Sci. Vitaminol. 64(4) (2018) 292-295. https://doi.org/10.3177/jnsv.64.292.
J. Zhang, C. Yi, J. Han, et al., Dose effect of high-docosahexaenoic acid tuna oil on dysbiosis in high-fat diet mice, J. Sci. Food. Agric. 102(12) (2022) 5531-5543. https://doi.org/10.1002/jsfa.11908.
S. Moran-Ramos, E. Ocampo-Medina, R. Gutierrez-Aguilar, et al., An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children, Sci. Rep. 7 (2017) 5607. https://doi.org/10.1038/s41598-017-05765-4.
Q. Li, W. Gu, X. Ma, et al., Amino acid and biogenic amine profile deviations in an oral glucose tolerance test: a comparison between healthy and hyperlipidaemia individuals based on targeted metabolomics, Nutrients 8(6) (2016) 379. https://doi.org/10.3390/nu8060379.
J. Swierczynski, T. Sledzinski, E. Slominska, et al., Serum phenylalanine concentration as a marker of liver function in obese patients before and after bariatric surgery, Obes. Surg. 19(7) (2009) 883-889. https://doi.org/10.1007/s11695-008-9521-z.
L. Payahoo, Y. Khajebishak, M.R. Alivand, et al., Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: a randomized clinical trial, Appetite 141 (2019) 104301. https://doi.org/10.1016/j.appet.2019.05.032.
T. Zhang, L.H. Bao, Q. Zhao, et al., Metabolomics reveals gut microbiota contribute to PPARα deficiency-induced alcoholic liver injury, J. Proteome. Res. (2023) 2327-2338. https://doi.org/10.1021/acs.jproteome.3c00093.
M. Igarashi, K. Iwasa, K. Yoshikawa, Feeding regulation by oleoylethanolamide synthesized from dietary oleic acid, Prostaglandins Leukot. Essent. Fatty Acids 165 (2021) 102228. https://doi.org/10.1016/j.plefa.2020.102228.
S.T. Li, X. L. Liao, , F. Y. Meng, et al., Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats, PLoS ONE 9(1) (2014). https://doi.org/10.1371/journal.pone.0086724.
W.S. Zhang, A. Pan, L. Yang, et al., American ginseng and asian ginseng intervention in diet-induced obese mice: metabolomics reveals distinct metabolic profiles, Am. J. Chin. Med. 47(4) (2019) 787-801. https://doi.org/10.1142/s0192415x19500411.