PDF (13.2 MB)
Collect
Submit Manuscript
Article | Open Access

Exploiting neonatal host-bifidobacteria interactions to promote intestinal pathogen tolerance and barrier function: Bifidobacterium longum subsp. infantis outperforms Bifidobacterium adolescentis in anti-Salmonella activity and maintenance of intestinal homeostasis

Chunxiu Lina,bShunhe Wanga,bMin Guoa,bWentian Lia,bJiayin Qiua,bYonghua ZhoucHao Zhanga,b,d,e,fWei Chena,b,dGang Wanga,b,d,f()
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlight

B. longum subsp. infantis outperforms B. adolescentis in protection against Salmonella in neonatal rats

B. longum subsp. infantis protects against Salmonella through modulation of the immune system and intestinal function

B. longum subsp. infantis is a promising probiotic for treating neonatal gut infections

Graphical Abstract

View original image Download original image

Abstract

Bifidobacterium longum subsp. infantis and Bifidobacterium adolescentis play important roles in the guts of infants and adolescents, respectively. In this study, using a neonatal rat model, we compared the protective effects of these 2 bifidobacterial species against Salmonella infection. The results demonstrated that B. longum subsp. infantis was more effective than B. adolescentis in alleviating the severity of infection in newborn rats exposed to Salmonella enterica serovar Typhimurium strain SL1344. B. longum subsp. infantis attenuated intestinal inflammation and mucosal damage induced by Salmonella infection, as well as protecting intestinal nerves and intestinal barrier function through TLR4/MyD88 signalling. B. longum subsp. infantis also displayed the potential to modulate gut metabolites by promoting the biosynthesis of unsaturated fatty acids (arachidonic acid, eicosapentaenoic acid and α-linolenic acid) and purine metabolism (guanine, adenine, inosine and adenosine), thereby regulating metabolic disturbances. Additionally, the benefits of B. longum subsp. infantis were also observed in the liver, spleen and brain, improving nerve reflexes and suppressing hepatosplenomegaly. Overall, these findings provide novel insights into the prevention and treatment of gut-related diseases in newborns, highlighting the potentially significant role of B. longum subsp. infantis in clinical applications.

Electronic Supplementary Material

Download File(s)
fshw-14-4-9250082_ESM.docx (3.2 MB)

References

[1]

N. Torow, T.W. Hand, M.W. Hornef, Programmed and environmental determinants driving neonatal mucosal immune development, Immunity 56 (2023) 485-499. https://doi.org/10.1016/j.immuni.2023.02.013.

[2]

M.A. Gordon, N.A. Feasey, T.S. Nyirenda, et al., Nontyphoid Salmonella disease, Hunt. Trop. Med. Emerg. Infect. Dis. 49 (2020) 500-506. https://doi.org/10.1016/B978-0-323-55512-8.00049-1.

[3]

S. Graham, Salmonellosis in children in developing and developed countries and populations, Curr. Opin. Infect. Dis. 15 (2002) 507-512. https://doi.org/10.1097/00001432-200210000-00009.

[4]

C.S. Marchello, S.D. Carr, J.A. Crump, A systematic review on antimicrobial resistance among Salmonella Typhi worldwide, Am. J. Trop. Med. Hyg. 103 (2020) 2518-2527. https://doi.org/10.4269/ajtmh.20-0258.

[5]

R. Enrique Castro-Vargas, M. Paula Herrera-Sanchez, R. Rodriguez-Hernandez, et al., Antibiotic resistance in Salmonella spp. isolated from poultry: a global overview, Vet. World 13 (2020) 2070-2084. https://doi.org/10.14202/vetworld.2020.2070-2084.

[6]

S. Priyamvada, S. Akhtar, Editorial: gut physiology: microbes and inflammatory diseases, Front. Physiol. 14 (2023) 1254228. https://doi.org/10.3389/fphys.2023.1254228.

[7]

E. Barba-Vidal, L. Castillejos, V.F.B. Roll, et al., The probiotic combination of Bifidobacterium longum subsp. infantis CECT 7210 and Bifidobacterium animalis subsp. lactis BPL6 reduces pathogen loads and improves gut health of weaned piglets orally challenged with Salmonella Typhimurium, Front. Microbiol. 8 (2017) 1570. https://doi.org/10.3389/fmicb.2017.01570.

[8]

Y. Lin, Z. Xie, Z. Li, et al., Assessment of the role and mechanism of Bifidobacterium animalis subsp. lactis isolated from neonates’ feces in protecting neonatal rats from Salmonella infection, Microb. Pathog. 174 (2023) 105935. https://doi.org/10.1016/j.micpath.2022.105935.

[9]

C.B. Wong, T. Odamaki, J. Xiao, Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits, FEMS Microbiol. Rev. 44 (2020) 369-385. https://doi.org/10.1093/femsre/fuaa010.

[10]

C. Lin, Y. Lin, H. Zhang, et al., Intestinal ‘infant-type’ bifidobacteria mediate immune system development in the first 1000 days of life, Nutrients 14 (2022) 1498. https://doi.org/10.3390/nu14071498.

[11]

M.F. Laursen, M. Sakanaka, N. von Burg, et al., Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut, Nat. Microbiol. 6 (2021) 1367-1382. https://doi.org/10.1038/s41564-021-00970-4.

[12]

B.M. Henrick, L. Rodriguez, T. Lakshmikanth, et al., Bifidobacteria-mediated immune system imprinting early in life, Cell 184 (2021) 3884-3898. https://doi.org/10.1016/j.cell.2021.05.030.

[13]

N.T. Devika, K. Raman, Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models, Sci. Rep. 9 (2019) 18222. https://doi.org/10.1038/s41598-019-54696-9.

[14]

K. Pacyga-Prus, D. Jakubczyk, C. Sandstrom, et al., Polysaccharide BAP1 of Bifidobacterium adolescentis CCDM 368 is a biologically active molecule with immunomodulatory properties, Carbohydr. Polym. 315 (2023) 120980. https://doi.org/10.1016/j.carbpol.2023.120980.

[15]

L. Fan, Y. Qi, S. Qu, et al., B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling, Gut Microbes 13 (2021) 1826746. https://doi.org/10.1080/19490976.2020.1826746.

[16]

C. Lin, Y. Lin, S. Wang, et al., Bifidobacterium animalis subsp. lactis boosts neonatal immunity: unravelling systemic defences against Salmonella, Food Funct. 1 (2024) 236-254. https://doi.org/10.1039/D3FO03686C.

[17]
C.J. Heyser, Assessment of developmental milestones in rodents, Curr. Protoc. Neurosci. Chapter 8 (2004) Unit 8.18. https://doi.org/10.1002/0471142301.ns0818s25.
[18]

Y. Chen, Y. Jin, C. Stanton, et al., Dose-response efficacy and mechanisms of orally administered CLA-producing Bifidobacterium breve CCFM683 on DSS-induced colitis in mice, J. Funct. Foods 75 (2020) 104245. https://doi.org/10.1016/j.jff.2020.104245.

[19]

M. Yamazaki, E. Fujii, T. Watanabe, et al., Histopathological evaluation of crypt fission during intestinal development in neonatal mice, J. Toxicol. Pathol. 33 (2020) 39-46. https://doi.org/10.1293/tox.2019-0032.

[20]

C. Lin, Y. Zheng, J. Lu, et al., Differential reinforcement of intestinal barrier function by various Lactobacillus reuteri strains in mice with DSS-induced acute colitis, Life Sci. 314 (2023) 121309. https://doi.org/10.1016/j.lfs.2022.121309.

[21]

B. Yang, M. Ding, Y. Chen, et al., Development of gut microbiota and bifidobacterial communities of neonates in the first 6 weeks and their inheritance from mother, Gut Microbes 13 (2021) e1908100. https://doi.org/10.1080/19490976.2021.1908100.

[22]

J. Liu, Z. Gu, W. Lu, et al., Multiple mechanisms applied by Lactobacillus pentosus AT6 to mute the lethal effects of Salmonella in a mouse model, Food Funct. 9 (2018) 2787-2795. https://doi.org/10.1039/C7FO01858D.

[23]

G. Zhu, M. Guo, J. Zhao, et al., Integrative metabolomic characterization reveals the mediating effect of Bifidobacterium breve on amino acid metabolism in a mouse model of Alzheimer’s disease., Nutrients 14 (2022) 735. https://doi.org/10.3390/nu14040735.

[24]

C. Lin, Y. Zheng, B. Zhang, et al., Amelioration of dextran sodium sulphate-induced colitis in mice by treatment with Lactobacillus rhamnosus and Lactobacillus reuteri: intraspecific and interspecific patterns, Food Sci. Hum. Wellness 13 (2024) 9250227. https://doi.org/10.26599/FSHW.2022.9250227.

[25]

A.K. Naik, U. Pandey, R. Mukherjee, et al., Lactobacillus rhamnosus GG reverses mortality of neonatal mice against Salmonella challenge, Tox. Res. 8 (2019) 361-372. https://doi.org/10.1039/c9tx00006b.

[26]

F.J. Bula-Rudas, M.H. Rathore, N.F. Maraqa, Salmonella infections in childhood, Adv. Pediatr. 62 (2015) 29-58. https://doi.org/10.1016/j.yapd.2015.04.005.

[27]

B. Luck, M.A. Engevik, B.P. Ganesh, et al., Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function, Sci. Rep. 10 (2020) 7737. https://doi.org/10.1038/s41598-020-64173-3.

[28]

J.J. Dehmer, A.P. Garrison, K.E. Speck, et al., Expansion of intestinal epithelial stem cells during murine development, PLoS One 6 (2011) e27070. https://doi.org/10.1371/journal.pone.0027070.

[29]

J.K. Gustafsson, M.E. Johansson, The role of goblet cells and mucus in intestinal homeostasis, Nat. Rev. Gastroenterol. Hepatol. 19 (2022) 785-803. https://doi.org/10.1038/s41575-022-00675-x.

[30]

A. Horowitz, S.D. Chanez-Paredes, X. Haest, et al., Paracellular permeability and tight junction regulation in gut health and disease, Nat. Rev. Gastroenterol. Hepatol. 20 (2023) 417-432. https://doi.org/10.1038/s41575-023-00766-3.

[31]

L.C. Frazer, M. Good, Intestinal epithelium in early life, Mucosal Immunol. 15 (2022) 1181-1187. https://doi.org/10.1038/s41385-022-00579-8.

[32]

W. Strzalka, A. Ziemienowicz, Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation, Ann. Bot. 107 (2011) 1127-1140. https://doi.org/10.1093/aob/mcq243.

[33]

E.M. Schill, A.N. Floyd, R.D. Newberry, Neonatal development of intestinal neuroimmune interactions, Trends Neurosci. 45 (2022) 928-941. https://doi.org/10.1016/j.tins.2022.10.002.

[34]

M.L. Kovler, A.J.G. Salazar, W.B. Fulton, et al., Toll-like receptor 4-mediated enteric glia loss is critical for the development of necrotizing enterocolitis, Sci. Transl. Med. 13 (2021) eabg3459. https://doi.org/10.1126/scitranslmed.abg3459.

[35]

Y. Wang, Q. Wang, K. Kuerban, et al., Colonic electrical stimulation promotes colonic motility through regeneration of myenteric plexus neurons in slow transit constipation beagles, Biosci. Rep. 39 (2019) BSR20182405. https://doi.org/10.1042/BSR20182405.

[36]

K.A. Fitzgerald, J.C. Kagan, Toll-like receptors and the control of immunity, Cell 180 (2020) 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041.

[37]

J.E. Koenig, A. Spor, N. Scalfone, et al., Succession of microbial consortia in the developing infant gut microbiome, PNAS. 108 (2011) 4578-4585. https://doi.org/10.1073/pnas.1000081107.

[38]

D. Meng, W. Zhu, K. Ganguli, et al., Anti-inflammatory effects of Bifidobacterium longum subsp. infantis secretions on fetal human enterocytes are mediated by TLR-4 receptors, Am. J. Physiol. Gastrointest. Liver Physiol. 311 (2016) G744-G753. https://doi.org/10.1152/ajpgi.00090.2016.

[39]

F. Backhed, J. Roswall, Y. Peng, et al., Dynamics and stabilization of the human gut microbiome during the first year of life, Cell Host Microbe 17 (2015) 852. https://doi.org/10.1016/j.chom.2015.05.012.

[40]
N.A. Andreollo, E.F. dos Santos, M.R. Araujo, et al., Rat’s age versus human’s age: what is the relationship? Arquivos Brasileiros de Cirurgia Digestiva: ABCD 25 (2012) 49-51. https://doi.org/10.1590/S0102-67202012000100011.
[41]

N. Tsukuda, K. Yahagi, T. Hara, et al., Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life, ISME J. 15 (2021) 2574-2590. https://doi.org/10.1038/s41396-021-00937-7.

[42]

S. Coniglio, M. Shumskaya, E. Vassiliou, Unsaturated fatty acids and their immunomodulatory properties, Biology 12 (2023) 279. https://doi.org/10.3390/biology12020279.

[43]

C.J. Andersen, Lipid metabolism in inflammation and immune function, Nutrients 14 (2022) 1414. https://doi.org/10.3390/nu14071414.

[44]

S. Saveljeva, G.W. Sewell, K. Ramshorn, et al., A purine metabolic checkpoint that prevents autoimmunity and autoinflammation, Cell Metab. 34 (2022) 106-124. https://doi.org/10.1016/j.cmet.2021.12.009.

[45]

T. Ding, G. Song, X. Liu, et al., Nucleotides as optimal candidates for essential nutrients in living organisms: a review, J. Funct. Foods 82 (2021) 104498. https://doi.org/10.1016/j.jff.2021.104498.

Food Science and Human Wellness
Article number: 9250082
Cite this article:
Lin C, Wang S, Guo M, et al. Exploiting neonatal host-bifidobacteria interactions to promote intestinal pathogen tolerance and barrier function: Bifidobacterium longum subsp. infantis outperforms Bifidobacterium adolescentis in anti-Salmonella activity and maintenance of intestinal homeostasis. Food Science and Human Wellness, 2025, 14(4): 9250082. https://doi.org/10.26599/FSHW.2024.9250082
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return