Calycosin, Astragali Radix most prominent ingredient, has drawn more attention as a result of its ability to treat atherosclerosis (AS). However, the mechanism of action has not been fully elucidated. We investigated the effects of calycosin on bile acid (BA) metabolism and gut microbiome in ApoE–/– mice fed a high-fat diet (HFD). The data showed that the aorta of ApoE–/– mice treated with HFD showed significant atheromatous plaque formation and lipid accumulation, and the levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) were significantly increased, while the levels of high-density lipoprotein cholesterol (HDL-C) were significantly decreased. Calycosin can substantially regulate lipid levels, thereby alleviating liver lipid deposition induced by atherosclerosis. In addition, 16S rRNA sequencing showed that calycosin treatment has reshaped the gut microbiota disturbed by HFD, in particular, increasing the ratio of Bacteroidetes/Firmicutes, and improving the relative abundance of Bilophila, Desulfovibrio, Bacteroides, Lactobacillus, etc. Meanwhile, targeted metabolomics analysis showed that calycosin treatment significantly modulated glycodeoxycholic acid (CDCA), taurocholic acids (TCA), lithocholic acid (LCA), deoxycholic acid (DCA), taurodeoxycholic acid (TDCA) and BA pool composition, which were associated with atherosclerotic plaque areas. In addition, calycosin treatment also down-regulated farnesoid X receptor (FXR) protein levels and up-regulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) protein levels in the hepatic. At the same time, calycosin inhibits the ileum FXR/TGR5 signaling pathway, inhibits BA reabsorption, promotes BA excretion, and reduces hepatic cholesterol accumulation by enterohepatic circulation. In addition, we found that calycosin significantly promoted the expression of hepatic ATP-binding cassette transporter A1 (ABCA1) and ABCG1 to mediate cholesterol efflux. Meanwhile, calycosin regulates gut microbiota, and Bacteroides, Alistipes, Desulfovibrio, Lactobacillus, Bilophila and Odoribacter are closely related to specific BAs. This enables us to further understand the relationship between BA metabolism and gut microbiota. Calycosin may reduce high-fat diet-induced hepatic cholesterol accumulation in ApoE–/– mice through gut microbiota and BA metabolism, and play a role in treating AS. Finally, we confirmed that calycosin-altered gut microbiota by fecal microbiota transplantation was sufficient to alleviate atherosclerosis. Taken together, our findings provide important insights into the pharmacological mechanisms underlying the efficacy of calycosin on atherosclerosis.
J. Bjorkegren, A.J. Lusis, Atherosclerosis: recent developments, Cell 185 (2022) 1630-1645. https://doi.org/10.1016/j.cell.2022.04.004.
P. Libby, The changing landscape of atherosclerosis, Nature 592 (2021) 524-533. https://doi.org/10.1038/s41586-021-03392-8.
A. Sahebkar, Z. Foroutan, N. Katsiki, et al., Ferroptosis, a new pathogenetic mechanism in cardiometabolic diseases and cancer: is there a role for statin therapy? Metab. Clin. Exp. 146 (2023) 155659-155659. https://doi.org/10.1016/j.metabol.2023.155659.
G. Gong, Y. Zheng, Y. Yang, et al., Pharmaceutical values of calycosin: one type of flavonoid isolated from Astragalus, Evid.-Based Compl. Alte. 2021 (2021) 9952578. https://doi.org/10.1155/2021/9952578.
X. Cheng, N. Liu, H. Liu, et al., Bioinformatic and biochemical findings disclosed anti-hepatic steatosis mechanism of calycosin, Bioorg. Chem. 100 (2020) 103914. https://doi.org/10.1016/j.bioorg.2020.103914.
Q. Lu, S. Luo, Y. Wen, Effect of ligustilide on Ang Ⅱ-induced hypertrophy in cardiomyocytes and the potential mechanisms, Exp. Ther. Med. 8 (2014) 169-174. https://doi.org/10.3892/etm.2014.1690.
C. Ma, H. Wu, G. Yang, et al., Calycosin ameliorates atherosclerosis by enhancing autophagy via regulating the interaction between KLF2 and MLKL in apolipoprotein E gene-deleted mice, Brit. J. Pharmacol. 179(2) (2022) 252-269. https://doi.org/10.1111/bph.15720.
M. Witkowski, T.L. Weeks, S.L. Hazen, Gut microbiota and cardiovascular disease, Circ. Res. 127(4) (2020) 553-570. https://doi.org/10.1161/CIRCRESAHA.120.316242.
L. Dong, Y. Li, Q. Chen, et al., Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes, Crit. Rev. Food Sci. (2023) 1-19. https://doi.org/10.1080/10408398.2023.2213768.
N. Kazemian, M. Mahmoudi, F. Halperin, et al., Gut microbiota and cardiovascular disease: Opportunities and challenges, Microbiome 8(1) (2020) 36. https://doi.org/10.1186/s40168-020-00821-0.
M.D. Pieczynska, Y. Yang, S. Petrykowski, et al., Gut microbiota and its metabolites in atherosclerosis development, Molecules 25 (3) (2020) 594. https://doi.org/10.3390/molecules25030594.
T. Purnak, C. Efe, O. Basar, Liver and atherosclerosis, Gastroenterology 146(5) (2014) 1427. https://doi.org/10.1053/j.gastro.2014.01.068.
H. Li, X.H. Yu, X. Ou, et al., Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis, Prog. Lipid Res. 83 (2021) 101109. https://doi.org/10.1016/j.plipres.2021.101109.
A.M. Mc, Modeling cholesterol metabolism and atherosclerosis, WIREs Mech. Dis. 14(3) (2022) e1546. https://doi.org/10.1002/wsbm.1546.
J. Chiang, J.M. Ferrell, Bile acid metabolism in liver pathobiology, Gene Expr. 18(2) (2018) 71-87. https://doi.org/10.3727/105221618X15156018385515.
Y. Wang, W.X. Ding, T. Li, Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis, BBA-Mol. Cell Biol. L. 1863(7) (2018) 726-733. https://doi.org/10.1016/j.bbalip.2018.04.005.
M. Vourakis, G. Mayer, G. Rousseau, The role of gut microbiota on cholesterol metabolism in atherosclerosis, Int. J. Mol. Sci. 22(15) (2021) 8074. https://doi.org/10.3390/ijms22158074.
F. Frost, M.M. Lerch, Gut microbial pathways for bile acid metabolism, Hepatobil. Surg. Nutr. 10(3) (2021) 379-381. https://doi.org/10.21037/hbsn-21-11.
D.J. Shin, L. Wang, Bile acid-activated receptors: a review on FXR and other nuclear receptors, Handb. Exp. Pharmacol. 256 (2019) 51-72. https://doi.org/10.1007/164_2019_236.
J.H. Kang, M. Kim, M. Yim, FXR/TGR5 mediates inflammasome activation and host resistance to bacterial infection, Biochem. Biophys. Rep. 27 (2021) 101051. https://doi.org/10.1016/j.bbrep.2021.101051.
L. Dong, C. Qin, Y. Li, et al., Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota, Food Biosci. 50 (2022) 101946. https://doi.org/10.1016/j.fbio.2022.101946.
X. Li, W. Zhao, M. Xiao, et al., Penthorum chinense Pursh. extract attenuates non-alcholic fatty liver disease by regulating gut microbiota and bile acid metabolism in mice, J. Ethnopharmacol. 294 (2022) 115333. https://doi.org/10.1016/j.jep.2022.115333.
G. Pujadas, L.L. Baggio, K.D. Kaur, et al., Genetic disruption of the GIPR in ApoE–/– mice promotes atherosclerosis, Mol. Metab. 65 (2022) 101586. https://doi.org/10.1016/j.molmet.2022.101586.
E.C. Noye, S. Bekkering, A.P. Limawan, et al., Postnatal inflammation in ApoE–/– mice is associated with immune training and atherosclerosis, Clin. Sci. 135(15) (2021) 1859-1871. https://doi.org/10.1042/CS20210496.
T. Takiishi, C. Fenero, N. Camara, Intestinal barrier and gut microbiota: shaping our immune responses throughout life, Tissue Barriers 5(4) (2017) e1373208. https://doi.org/10.1080/21688370.2017.1373208.
H. Nie, Q. Xiong, G. Lan, et al., Sivelestat alleviates atherosclerosis by improving intestinal barrier function and reducing endotoxemia, Front. Pharmacol. 13 (2022) 838688. https://doi.org/10.3389/fphar.2022.838688.
A. Wang, B. Guan, C. Shao, et al., Qing-Xin-Jie-Yu Granule alleviates atherosclerosis by reshaping gut microbiota and metabolic homeostasis of ApoE–/– mice, Phytomedicine 103 (2022) 154220. https://doi.org/10.1016/j.phymed.2022.154220.
Y. Li, C. Qin, L. Dong, et al., Whole grain benefit: synergistic effect of oat phenolic compounds and beta-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice, Food Funct. 13(24) (2022) 12686-12696. https://doi.org/10.1039/d2fo01746f.
Y. Yang, C. Wu, Targeting gut microbial bile salt hydrolase (BSH) by diet supplements: New insights into dietary modulation of human health, Food Funct. 13(14) (2022) 7409-7422. https://doi.org/10.1039/d2fo01252a.
S. Qiao, L. Bao, K. Wang, et al., Activation of a specific gut Bacteroides-Folate-Liver axis benefits for the alleviation of nonalcoholic hepatic steatosis, Cell Rep. 32(6) (2020) 108005. https://doi.org/10.1016/j.celrep.2020.108005.
L. Yao, S.C. Seaton, S. Ndousse-Fetter, et al., A selective gut bacterial bile salt hydrolase alters host metabolism, eLife 7 (2018). https://doi.org/10.7554/eLife.37182.
K. Zhang, X. Qin, J. Qiu, et al., Desulfovibrio desulfuricans aggravates atherosclerosis by enhancing intestinal permeability and endothelial TLR4/NF-κB pathway in ApoE–/– mice, Gene. Dis. 10(1) (2023) 239-253. https://doi.org/10.1016/j.gendis.2021.09.007.
Z. Feng, W. Long, B. Hao, et al., A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice, Gut Pathog. 9 (2017) 59. https://doi.org/10.1186/s13099-017-0208-7.
J.M. Natividad, B. Lamas, H.P. Pham, et al., Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice, Nat. Commun. 9(1) (2018) 2802. https://doi.org/10.1038/s41467-018-05249-7.
Z. Dai, S. Li, Y. Meng, et al., Capsaicin ameliorates high-fat diet-induced atherosclerosis in ApoE–/– mice via remodeling gut microbiota, Nutrients 14(20) (2022) 4334. https://doi.org/10.3390/nu14204334.
J. Yang, H. Wei, Y. Zhou, et al., High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites, Gastroenterology 162(1) (2022) 135-149.https://doi.org/10.1053/j.gastro.2021.08.041.
B.J. Parker, P.A. Wearsch, A. Veloo, et al., The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health, Front. Immunol. 11 (2020) 906. https://doi.org/10.3389/fimmu.2020.00906.
C. Wu, Y. Tian, J. Yu, et al., The Pandanus tectorius fruit extract (PTF) modulates the gut microbiota and exerts anti-hyperlipidaemic effects, Phytomedicine 58 (2019) 152863. https://doi.org/10.1016/j.phymed.2019.152863.
A. Wahlstrom, S.I. Sayin, H.U. Marschall, et al., Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism, Cell Metab. 24(1) (2016) 41-50. https://doi.org/10.1016/j.cmet.2016.05.005.
D.H. Volle, Bile acids, roles in integrative physiology and pathophysiology, Mol. Aspects Med. 56 (2017) 1. https://doi.org/10.1016/j.mam.2017.07.001.
S. Qi, X. Luo, S. Liu, et al., The critical effect of bile acids in atherosclerosis, J. Cardiovasc. Pharm. 80(4) (2022) 562-573. https://doi.org/10.1097/FJC.0000000000001320.
A.J. Pablo, D. Cabrera, M. Arrese, Bile acids in cholestasis and its treatment, Ann. Hepatol. 16 (2017) S53-S57. https://doi.org/10.5604/01.3001.0010.5497.
Y. Xu, F. Li, M. Zalzala, et al., Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice, Hepatology 64(4) (2016) 1072-1085.https://doi.org/10.1002/hep.28712.
J. Hageman, H. Herrema, A.K. Groen, F. Kuipers, A role of the bile salt receptor FXR in atherosclerosis, Arterioscl. Throm. Vas. 30(8) (2010) 1519-1528. https://doi.org/10.1161/ATVBAHA.109.197897.
D. Moris, C. Giaginis, G. Tsourouflis, et al., Farnesoid-X receptor (FXR) as a promising pharmaceutical target in atherosclerosis, Curr. Med. Chem. 24(11) (2017) 1147-1157. https://doi.org/10.2174/0929867324666170124151940.
T.W. Pols, M. Nomura, T. Harach, et al., TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading, Cell Metab. 14(6) (2011) 747-757. https://doi.org/10.1016/j.cmet.2011.11.006.
K. Jadhav, Y. Xu, Y. Xu, et al., Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR, Mol. Metab. 9 (2018) 131-140. https://doi.org/10.1016/j.molmet.2018.01.005.
Y. Lee, B.R. Kim, G.H. Kang, et al., The effects of PPAR agonists on atherosclerosis and nonalcoholic fatty liver disease in ApoE–/–FXR–/– mice, Endocrinol. Metab. 36(6) (2021) 1243-1253. https://doi.org/10.3803/EnM.2021.1100.
T. Li, M. Matozel, S. Boehme, et al., Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis, Hepatology 53(3) (2011) 996-1006. https://doi.org/10.1002/hep.24107.
Y. Wang, W. Ding, T. Li, Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis, BBA-Mol. Cell Biol. L. 1863(7) (2018) 726-733. https://doi.org/10.1016/j.bbalip.2018.04.005.