PDF (4.3 MB)
Collect
Submit Manuscript
Article | Open Access

Bifunctional ZrO2@ZIF-90 nanozyme with high phosphohydrolase activity for sensitive electrochemical detection of methyl parathion

Xiaomin PangaGeoffrey I.N. WaterhousebRuiqiang WangcXuguang QiaoaYufeng Suna()Zhixiang Xua()
Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
Shandong Cayon Testing Co., Ltd., Jining 272000, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• A ZrO2@ZIF-90 nanozyme was applied for electrochemical detection of methyl parathion.

• ZrO2 enhanced the phosphohydrolase activity of ZIF-90 and the electrochemical signal.

• The paper provided a new strategy for design and application of multifunctional nanozyme.

Abstract

In this work, a novel bifunctional zirconium dioxide@zeolitic imidazolate framework-90 (ZrO2@ZIF-90) nanozyme was successfully developed for the catalytic degradation and electrochemical detection of methyl parathion (MP). The ZrO2@ZIF-90 nanozyme with phosphatase hydrolysis activity can convert MP into p-nitrophenol (p-NP). The addition of ZrO2 riched in Lewis acid Zr(Ⅳ) sites significantly enhanced the phosphatase hydrolysis activity of ZIF-90. ZrO2@ZIF-90 also displayed satisfactory electrocatalytic performance on account of the high surface area, high porosity and powerful enrichment ability of the ZIF-90 and the excellent ion transfer capacity of ZrO2. A ZrO2@ZIF-90 nanozyme modified glassy carbon electrode (ZrO2@ZIF-90/GCE) was then fabricated to analyze p-NP formed through MP degradation. Under the optimized conditions, the developed sensor displayed satisfactory analytical performance with a low limit of detection of 0.53 μmol/L and two wide linear ranges (3-10 and 10-200 μmol/L). ZrO2@ZIF-90 nanozyme accomplished to the degradation and electrochemical detection of MP in river water and spiked fruits. This study identifies a promising new strategy for the design of bifunctional nanozymes for the detection of environmental hazards.

Electronic Supplementary Material

Download File(s)
fshw-14-2-9250095-ESM.docx (494 KB)

References

[1]

L.J. Wang, Y. Sun, Engineering organophosphate hydrolase for enhanced biocatalytic performance: a review, Biochem. Eng. J. 168 (2021) 107945. https://doi.org/10.1016/j.bej.2021.107945.

[2]

T. Islamoglu, Z.J. Chen, M.C. Wasson, et al., Metal-organic frameworks against toxic chemicals, Chem. Rev. 120 (2020) 8130-8160. https://doi.org/10.1021/acs.chemrev.9b00828.

[3]

P. Mishra, J. Lee, D. Kumar, et al., Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications, Adv. Funct. 32 (2022) 2108650. https://doi.org/10.1002/adfm.202108650.

[4]

S. Kumar, G. Kaushik, M.A. Dar, et al., Microbial degradation of organophosphate pesticides: a review, Pedosphere 28 (2018) 190-208. https://doi.org/10.1016/s1002-0160(18)60017-7.

[5]

G. Andrade, S. Monteiro, J. Francisco, et al., Liquid chromatography-electrospray ionization tandem mass spectrometry and dynamic multiple reaction monitoring method for determining multiple pesticide residues in tomato, Food Chem. 175 (2015) 57-65. http://doi.org/10.1016/j.foodchem.2014.11.105.

[6]

G.K. Sidhu, S. Singh, V. Kumar, et al., Toxicity, monitoring and biodegradation of organophosphate pesticides: a review, Crit. Rev. Environ. Sci. Technol. 49 (2019) 1135-1187. http://doi.org/10.1080/10643389.2019.1565554.

[7]

Y. Pico, A.H. Alfarhan, D. Barcelo, How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: an alternative technique to be in your radar, Trend Anal. Chem. 122 (2020) 115720. https://doi.org/10.1016/j.trac.2019.115720.

[8]

J.J. Yao, Z.X. Wang, L.L. Guo, et al., Advances in immunoassays for organophosphorus and pyrethroid pesticides, Trends Analyt. Chem. 131 (2020) 116022. https://doi.org/10.1016/j.trac.2020.116022.

[9]

C.S. Pundir, A. Malik, Preety, Bio-sensing of organophosphorus pesticides: a review, Biosens. Bioelectron. 140 (2019) 111348. https://doi.org/10.1016/j.bios.2019.111348.

[10]

Q. Zhang, Q. Xu, Y. Guo, et al., Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides, RSC Adv. 6 (2016) 24698e24703. https://doi.org/10.1039/C5RA21799G.

[11]

J.C. Wei, L.L. Yang, M. Luo, et al., Nanozyme-assisted technique for dual mode detection of organophosphorus pesticide, Ecotoxicol. Environ. Saf. 179 (2019) 17-23. https://doi.org/10.1016/j.ecoenv.2019.04.041.

[12]

W.P. Yang, X. Yang, L.J. Zhu, et al., Nanozymes: activity origin, catalytic mechanism, and biological application, Coordin. Chem. Rev. 448 (2021) 214170. https://doi.org/10.1016/j.ccr.2021.214170.

[13]

A. Kirchon, L. Feng, H.F. Drake, et al., From fundamentals to applications: a toolbox for robust and multifunctional MOF materials, Chem. Soc. Rev. 47 (2018) 8611-8638. https://doi.org/10.1039/C8CS00688A.

[14]

H. Furukawa, K.E. Cordova, M. O’Keeffe, et al., The chemistry and applications of metal-organic frameworks, Science 341 (2013) 1230444. https://10.1126/science.1230444.

[15]

H.C. He, L. Hashemi, M.L. Hu, et al., The role of the counter-ion in metal-organic frameworks’ chemistry and applications, Coordin. Chem. Rev. 376 (2018) 319-347. https://doi.org/10.1016/j.ccr.2018.08.014.

[16]

H. Furukawa, N. Ko, Y.B. Go, et al., Ultrahigh porosity in metal-organic frameworks, Science 329 (2010) 424-428. https://doi.org/10.1126/science.1192160.

[17]

T. Kitao, Y.Y. Zhang, S. Kitagawa, et al., Hybridization of MOFs and polymers, Chem. Soc. Rev. 46 (2017) 3108-3133. https://doi.org/10.1039/C7CS00041C.

[18]

Z.J. Chen, H. Jiang, M. Li, et al., Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal-organic frameworks, Chem. Rev. 120 (2020) 8039-8065. https://doi.org/10.1021/acs.chemrev.9b00648.

[19]

X. Huang, S. Zhang, Y.J. Tang, et al., Advances in metal-organic framework-based nanozymes and their applications, Coord. Chem. Rev. 449 (2021) 214216. https://doi.org/10.1016/j.ccr.2021.214216.

[20]

T. Fu, C.J. Xu, R.R. Guo, et al., Zeolitic imidazolate framework-90 nanoparticles as nanozymes to mimic organophosphorus hydrolase, ACS Appl. Nano Mater. 4 (2021) 3345-3350. https://doi.org/10.1021/acsanm.1c00540.

[21]

D.Y. Tong, Y.L. Zhao, Y.Q. Wang, et al., Influence of potential contaminants on I2 and CH3I adsorption onto zeolitic imidazolate frameworks (ZIFs) using GCMC simulations, Comput. Mater. Sci. 229 (2023) 112417. https://doi.org/10.1016/j.commatsci.2023.112417.

[22]

L.H. Zhang, Q.W. Wang, Y. Qi, et al., An ultrasensitive sensor based on polyoxometalate and zirconium dioxide nanocomposites hybrids material for simultaneous detection of toxic clenbuterol and ractopamine, Sens. Actuators B Chem. 288 (2019) 347-355. https://doi.org/10.1016/j.snb.2019.03.033.

[23]

Q. Dong, S.Y. Shi, Y.S. Xie, et al., Preparation of mesoporous zirconia ceramic fibers modified by dual surfactants and their phosphate adsorption characteristics, Ceram. Int. 46 (2020) 14019-14029. https://doi.org/10.1016/j.ceramint.2020.02.201.

[24]

H.Y. Zhao, B.B. Liu, Y.F. Li, et al., One-pot green hydrothermal synthesis of bio-derived nitrogen-doped carbon sheets embedded with zirconia nanoparticles for electrochemical sensing of methyl parathion, Ceram. Int. 46 (2020) 19713-19722. https://doi.org/10.1016/j.ceramint.2020.04.277.

[25]

X.C. Wu, J.H. Wei, C.Y. Wu, et al., ZrO2/CeO2/polyacrylic acid nanocomposites with alkaline phosphatase-like activity for sensing, Spectrochim. Acta A Mol. Biomol. Spectrosc. 263 (2021) 120165. https://doi.org/10.1016/j.saa.2021.120165.

[26]

R.Q. Liu, Y.S. Wang, B. Li, et al., VXC-72R/ZrO2/GCE-based electrochemical sensor for the high-sensitivity detection of methyl parathion, Materials 12 (2019) 3637. https://doi.org/10.3390/ma12213637.

[27]

Y.Z. Sun, J.C. Wei, J. Zou, et al., Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect, J. Pharm. Anal. 11 (2021) 653-660. https://doi.org/10.1016/j.jpha.2020.09.002.

[28]

L.H. Qiu, P. Lv, C.L. Zhao, et al., Electrochemical detection of organophosphorus pesticides based on amino acids conjugated nanoenzyme modified electrodes, Sens. Actuators B Chem. 286 (2019) 386-393. https://doi.org/10.1016/j.snb.2019.02.007.

[29]

J.J. Deng, K. Wang, M. Wang, et al., Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells, J. Am. Chem. Soc. 139 (2017) 5877-5882. https://doi.org/10.1021/jacs.7b01229.

[30]

G.Z. Li, Z.H. Si, S. Yang, et al., A defects-free ZIF-90/6FDA-durene membrane based on the hydrogen bonding/covalent bonding interaction for gas separation, J. Membr. Sci. 661 (2022) 120910. https://doi.org/10.1016/j.memsci.2022.120910.

[31]

G.W. Zhan, H.C. Zeng, A synthetic protocol for preparation of binary multi-shelled hollow spheres and their enhanced oxidation application, Chem. Mater. 29 (2017) 10104-10112. https://doi.org/10.1021/acs.chemmater.7b03875.

[32]

J.J. Chen, J.X. Liu, Y.P. Hu, et al., Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release, Sci. Technol. Adv. Mater. 20 (2019) 1043-1054. https://doi.org/10.1080/14686996.2019.1682467.

[33]

L. Vaidya, S. Nadar, V. Rathod, Entrapment of surfactant modified lipase within zeolitic imidazolate framework (ZIF)-8, Int. J. Biol. Macromol. 146 (2020) 678-686. https://doi.org/10.1016/j.ijbiomac.2019.12.164.

[34]

J. Zhang, X.Y. Wang, Y.H. Wang, et al., Colorable zeolitic imidazolate frameworks for colorimetric detection of biomolecules, Anal. Chem. 92 (2020) 12670-12677. https://doi.org/10.1021/acs.analchem.0c02895.

[35]

J.Y. Tian, Q. Shao, J.K. Zhao, et al., Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B, J. Colloid Interface Sci. 541 (2019) 18-29. https://doi.org/10.1016/j.jcis.2019.01.069.

[36]

Q.L. Chen, W.L. Yang, J.J. Zhu, et al., Enhanced visible light photocatalytic activity of g-C3N4 decorated ZrO2-x nanotubes heterostructure for degradation of tetracycline hydrochloride, J. Hazard. Mater. 384 (2020) 121275. https://doi.org/10.1016/j.jhazmat.2019.121275.

[37]

W.L. Xie, F. Wan, Guanidine post-functionalized crystalline ZIF-90 frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification. Energy Convers. Manag. 198 (2019) 111922. https://doi.org/10.1016/j.enconman.2019.111922.

[38]

T.T. Lin, T. Qin, S.S. Jiang, et al., Anti-inflammatory and anti-biotic drug metronidazole loaded ZIF-90 nanoparticles as a pH responsive drug delivery system for improved pediatric sepsis management. Microb. Pathog. 176 (2022) 105941. https://doi.org/10.1016/j.micpath.2022.105941.

[39]

L. Qiu, P. Wang, S.D. Zhang, et al., Enhanced, stable, humidity-tolerant xylene sensing using ordered macroporous NiO/ZrO2 nanocomposites, Sens. Actuators B Chem. 324 (2020) 128648. https://doi.org/10.1016/j.snb.2020.128648.

[40]

E. Murugan, Z. Poongan, A new sensitive electrochemical sensor based on BiVO4/ZrO2@graphene modified GCE for concurrent sensing of acetaminophen, phenylephrine hydrochloride and cytosine in medications and human serum samples, Diam. Relat. Mater. 126 (2022) 209117. https://doi.org/10.1016/j.diamond.2022.109117.

[41]

Z.Y. Liu, A.P. Wu, H.J. Yan, et al., An effective “precursortransformation” route toward the high-yield synthesis of ZIF-8 tubes, ChemComm. 56 (2020) 2913-2916. https://doi.iog/10.1039/C9CC08724A.

[42]

Z.L. Wu, L. Wang, S.X. Chen, et al., Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance lithium-sulfur cathodes, Chem. Eng. J. 404 (2021) 126579. https://doi.org/10.1016/j.cej.2020.126579.

[43]

Y.F. Sun, G.I.N. Waterhouse, L.H. Xu, et al., Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone, Sens. Actuators B Chem. 321 (2020) 128501. https://doi.org/10.1016/j.snb.2020.128501.

[44]

F.A. Beni, M.N. Shahrak, Alkali metals-promoted capacity of ZIF-8 and ZIF-90 for carbon capturing: a molecular simulation study, Polyhedron 178 (2020) 114338. https://doi.org/10.1016/j.poly.2019.114338.

[45]

Y.X. Mao, J. Cheng, H. Guo, et al., Sulfamic acid-modified zeolitic imidazolate framework (ZIF-90) with synergetic Lewis and Brønsted acid sites for microalgal biodiesel production, Fuel 331 (2023) 125795. https://doi.org/10.1016/j.fuel.2022.125795.

[46]

H. Anwer, J.W. Park, Synthesis and characterization of a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for degradation of organic contaminants, J. Hazard. Mater. 358 (2018) 416-426. https://doi.org/10.1016/j.jhazmat.2018.07.019.

[47]

A.A. Vernekar, T. Das, G. Mugesh, Vacancy-engineered nanoceria: enzyme mimetic hotspots for the degradation of nerve agents, Angew. Chem. Int. Ed. 55 (2016) 1412-1416. https://doi.org/10.1002/anie.201510355.

[48]

B. Liu, C.M. Li, G.Q. Zhang, et al., Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods, ACS Catal. 8 (2018) 10446-10456. https://doi.org/10.1021/acscatal.8b00415.

[49]

M. Pontié, G. Thouand, F. de Nardi, et al., Antipassivating electrochemical process of glassy carbon electrode (GCE) dedicated to the oxidation of nitrophenol compounds, Electroanalysis 23 (2011) 1579-1584. https://doi.org/10.1002/elan.201100082.

[50]

M. Santhiago, C.S. Henry, L.T. Kubota, Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol, Electrochim. 130 (2014) 771-777. https://doi.org/10.1016/j.electacta.2014.03.109.

[51]

H.X. Wu, M.C. Rong, Y. Ma, et al., PVP-mediated galvanic replacement growth of AgNPs on copper foil for SERS sensing, Nanomicro. Lett. 15 (2020) 590-594. https://doi.org/10.1049/mnl.2020.0148.

[52]

M. Jain, P. Yadav, B. Joshi, et al., Recombinant organophosphorus hydrolase (OPH) expression in E. coli for the effective detection of organophosphate pesticides, Protein Expr. Purif. 186 (2021) 105929. https://doi.org/10.1016/j.pep.2021.105929.

[53]

J. Kumar, S.F. D’Souza, An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent, Biosens. Bioelectron. 26 (2010) 1292-1296. https://doi.org/10.1016/j.bios.2010.07.016.

[54]

R. Kaur, S. Rana, K. Lalit, et al., Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-haemoglobin coatings, Biosens. Bioelectron. 167 (2020) 112486. https://doi.org/10.1016/j.bios.2020.112486.

[55]

J.N. Nirmala, A. Kumaravel, M. Chandrasekaran, Stearic acid modified glassy carbon electrode for electrochemical sensing of parathion and methyl parathion, J. Appl. Electrochem. 40 (2010) 1721-1727. https://doi.org/10.1007/s10800-010-0125-7.

[56]

J. Cao, Z.H. Yang, W.P. Xiong, et al., One-step synthesis of co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis, Chem. Eng. J. 353 (2018) 126-137. https://doi.org/10.1016/j.cej.2018.07.060.

Food Science and Human Wellness
Article number: 9250095
Cite this article:
Pang X, Waterhouse GI, Wang R, et al. Bifunctional ZrO2@ZIF-90 nanozyme with high phosphohydrolase activity for sensitive electrochemical detection of methyl parathion. Food Science and Human Wellness, 2025, 14(2): 9250095. https://doi.org/10.26599/FSHW.2024.9250095
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return