PDF (9.6 MB)
Collect
Submit Manuscript
Open Access

The effects of selenium on the translation efficiency of selenoproteins GPX1, GPX4, and TXNRD1 in oxLDL-induced EA.hy926 cells

Jiaqi LuaJing MengaYanzhi LangaAbdul RehmanbYamei Yanc ()Linwu Rana()
Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
Goji Berry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China

Peer review under responsibility of Beijing Academy of Food Sciences

Show Author Information

Abstract

Selenium is a crucial trace element that contributes to physiological processes in the body as selenoproteins. Selenoproteins serve as an integral role in the body in controlling the redox state of cells and protecting against damage induced by oxidative stress. This study aimed to investigate the effects and possible mechanism of selenium on selenoproteins expression in EA.hy926 cells induced by oxidized low density lipoprotein (oxLDL). The impact of selenium on the viability of EA.hy926 cells was detected by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) method, and intracellular reactive oxygen species (ROS) level and mitochondrial membrane potential were assessed by fluorescent probe DCFH-DA and JC-1, respectively. RNA-seq, quantitative real-time polymerase chain reaction (qPCR), and Western blot were used to investigate the selenoprotein expression. Selenoprotein mRNA translation efficiency was analyzed by ribosome profiling (Ribo-Seq) coupled with transcriptomics. Our data showed that selenium supplementation (0.5 μmol/L) significantly decreased ROS production, increased mitochondrial inner membrane potential and increased the proliferative activity of EA.hy926 cells induced by oxLDL. Moreover, The protective effects of selenium against oxLDL-induced EA.hy926 cell injury were associated with the upregulation of the expressions of selenoproteins glutathione peroxidase 1 (GPX1), glutathione peroxidase 4 (GPX4), and thioredoxin reductase 1 (TXNRD1). Furthermore, the expressions of selenoproteins GPX1 and GPX4 were hierarchically controlled, but the expressions of selenoproteins TXNRD1 were mainly regulated by oxLDL. Finally, Ribo-Seq coupled with transcriptomics results demonstrated that the expressions of selenoproteins GPX1, GPX4, and TXNRD1 were regulated at the translation process level. These findings suggested that selenium could have preventive effects in oxLDL induced EA.hy926 cell injury by regulating the selenoprotein expression, and the selenoproteins expressions at the translation level in vascular endothelial cells need further study.

Electronic Supplementary Material

Download File(s)
fshw-14-1-9250125_ESM.docx (1.5 MB)

References

[1]
WHO, World health statistics 2023: monitoring health for the SDGs, sustainable development goals, WHO 2023, CC BY-NC-SA 3.0 IGO.
[2]

N. Niu, S. Xu, Y. Xu, et al., Targeting mechanosensitive transcription factors in atherosclerosis, Trends Pharmacol. Sci. 40 (2019) 253-266. https://doi.org/10.1016/j.tips.2019.02.00.

[3]

U. Förstermann, N. Xia, H. Li, Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis, Circ. Res. 120 (2017) 713-735. https://doi.org/10.1161/CIRCRESAHA.116.309326.

[4]

M. Gliozzi, M. Scicchitano, F. Bosco, et al., Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development, Int. J. Mol. Sci. 20 (2019) 3294. https://doi.org/10.3390/ijms20133294.

[5]

S. Ichihara, The pathological roles of environmental and redox stresses in cardiovascular diseases, Environ. Health Prev. Med. 18 (2013) 177-184. https://doi.org/10.1007/s12199-012-0326-2.

[6]

K. Rivera, F. Salas-Pérez, G. Echeverría, et al., Red wine grape pomace attenuates atherosclerosis and myocardial damage and increases survival in association with improved plasma antioxidant activity in a murine model of lethal ischemic heart disease, Nutrients 11 (2019) 2135. https://doi.org/10.3390/nu11092135.

[7]

S.C Chai, K. Davis, Z. Zhang, et al., Effects of tart cherry juice on biomarkers of inflammation and oxidative stress in older adults, Nutrients 11 (2019) 228. https://doi.org/10.3390/nu11020228.

[8]

Q. Jiang, L. Wang, X. Si, et al., Pterostilbene antagonizes homocysteine-induced oxidative stress, apoptosis and lipid deposition in vascular endothelial cells, Food Sci. Hum. Well. 12 (2023) 1683-1692. https://doi.org/10.1016/j.fshw.2022.03.027.

[9]

F. Violi, D. Pastori, P. Pignatelli, et al., Nutrition, thrombosis, and cardiovascular disease, Circ. Res. 126 (2020) 1415-1442. https://doi.org/10.1161/CIRCRESAHA.120.315892.

[10]

R.M. Rua, F. Nogales, O. Carreras, et al., Selenium, selenoproteins and cancer of the thyroid, J. Trace. Elem. Med. Biol. (2023) 127115. https://doi.org/10.1016/j.jtemb.2022.127115.

[11]

R. Swart, A.E. Schutte, J.M. van Rooyen, et al., Selenium and large artery structure and function: a 10-year prospective study, Eur. J. Nutr. 58 (2019) 3313-3323. https://doi.org/10.1007/s00394-018-1875-y.

[12]

T. Pan, X. Hu, T. Liu, et al., MiR-128-1-5p regulates tight junction induced by selenium deficiency via targeting cell adhesion molecule 1 in broilers vein endothelial cells, J. Cell. Physiol. 233 (2018) 8802-8814. https://doi.org/10.1002/jcp.26794.

[13]

Z. Zheng, L. Liu, K. Zhou, et al., Anti-oxidant and anti-endothelial dysfunctional properties of nano-selenium in vitro and in vivo of hyperhomocysteinemic rats, Int. J. Nanomed. 15 (2020) 4501-4521. https://doi.org/10.2147/IJN.S255392.

[14]

J.C. Avery, P.R. Hoffmann, Selenium, selenoproteins, and immunity, Nutrients 10 (2018) 1203. https://doi.org/10.3390/nu10091203.

[15]

D. Santesmasses, M. Mariotti, V.N. Gladyshev, Bioinformatics of selenoproteins, Antioxid. Redox Sign. 33 (2020) 525-536. https://doi.org/10.1089/ars.2020.8044.

[16]

T. Hilal, B.Y. Killam, M. Grozdanović, et al., Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon, Science 376 (2022) 1338-1343. https://doi.org/10.3390/antiox12020229.

[17]

L. Latrèche, O. Jean-Jean, D.M. Driscoll, et al., Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine, Nucleic. Acids. Res. 37 (2019) 5868-5880. https://doi.org/10.1093/nar/gkp635.

[18]

M. Zhang, W. Sun, J. Yang, et al., The effect of preventing oxidative stress and its mechanisms in the extract from Sonchus brachyotus DC. based on the Nrf2-Keap1-are signaling pathway, Antioxidants (Basel) 12 (2023) 1677. https://doi.org/10.3390/antiox12091677.

[19]

N.T. Ingolia, G.A. Brar, S. Rouskin, et al., The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments, Nat. Protoc. 7 (2012) 1534-1550. https://doi.org/10.1038/nprot.2012.086.

[20]

S. Chen, Y. Zhou, Y. Chen, et al., fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics 34 (2018) i884-i890. https://doi.org/10.1093/bioinformatics/bty560.

[21]

D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods 12 (2015) 357-360. https://doi.org/10.1038/nmeth.3317.

[22]

A. Dobin, C.A. Davis, F. Schlesinger, et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics 29 (2013) 15-21. https://doi.org/10.1093/bioinformatics/bts635.

[23]

B. Li, C.N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics 12 (2011) 323. https://doi.org/10.1186/1471-2105-12-323.

[24]

M. Pertea, D. Kim, G.M. Pertea, et al., Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown, Nat. Protoc. 11 (2016) 1650-1667. https://doi.org/10.1038/nprot.2016.095.

[25]

D.E. Handy, J. Loscalzo, Responses to reductive stress in the cardiovascular system, Free. Radic. Biol. Med. 109 (2017) 114-124. https://doi.org/10.1016/j.freeradbiomed.2016.12.006.

[26]

H. Zheng, S. Huang, G. Wei, et al., CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output, Mol. Ther. 30 (2022) 3477-3498. https://doi.org/10.1016/j.ymthe.2022.06.016.

[27]

X. Jin, W. Fu, J. Zhou, et al., Oxymatrine attenuates oxidized low-density lipoprotein-induced HUVEC injury by inhibiting NLRP3 inflammasome-mediated pyroptosis via the activation of the SIRT1/Nrf2 signaling pathway, Int. J. Mol. Med. 48 (2021) 187. https://doi.org/10.3892/ijmm.2021.5020.

[28]

J.K. Wrobel, R. Power, M. Toborek, Biological activity of selenium: Revisited, IUBMB Life 2 (2016) 97-105. https://doi.org/10.1002/iub.1466.

[29]

M.P. Rayman, Selenium and human health, Lancet 379 (2012) 1256-1268. https://doi.org/10.1016/S0140-6736(11)61452-9.

[30]

A. Vučković, R. Venerando, E. Tibaldi, et al., Aerobic pyruvate metabolism sensitizes cells to ferroptosis primed by GSH depletion, Free. Radic. Biol. Med. 167 (2021) 45-53. https://doi.org/10.1016/j.freeradbiomed.2021.02.045.

[31]

X. Yan, M.P. Pepper, M.Z. Vatamaniuk, et al., Dietary selenium deficiency partially rescues type 2 diabetes-like phenotypes of glutathione peroxidase-1-overexpressing male mice, J. Nutr. 11 (2012) 1975-1982. https://doi.org/10.3945/jn.112.164764.

[32]

J.M. Stolwijk, K.C. Falls-Hubert, C.C. Searby, et al., Simultaneous detection of the enzyme activities of GPX1 and GPX4 guide optimization of selenium in cell biological experiments, Redox. Biol. 32 (2020) 101518. https://doi.org/10.1016/j.redox.2020.101518.

[33]

C. Furman, A.K. Rundlöf, G. Larigauderie, et al., Thioredoxin reductase 1 is upregulated in atherosclerotic plaques: specific induction of the promoter in human macrophages by oxidized low-density lipoproteins, Free. Radic. Biol. Med. 37 (2004) 71-85. https://doi.org/10.1016/j.freeradbiomed.2004.04.016.

[34]

Z. Touat-Hamici, Y. Legrain, A. Bulteau, et al., Selective up-regulation of human selenoproteins in response to oxidative stress, J. Biol. Chem. 289 (2014) 14750-14761. https://doi.org/10.1074/jbc.M114.551994.

[35]

V.N. Gladyshev, E.S. Arnér, M.J. Berry, et al., Selenoprotein gene nomenclature, J. Biol. Chem. 291 (2016) 24036-24040. https://doi.org/10.1074/jbc.M116.756155.

[36]

D. Merk, J. Ptok, P. Jakobs, et al., Selenoprotein T protects endothelial cells against lipopolysaccharide-induced activation and apoptosis, Antioxidants (Basel) 10 (2021) 1427. https://doi.org/10.3390/antiox10091427.

[37]

U. Alehagen, P. Johansson, M. Björnstedt, et al., ardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens, Int. J. Cardiol. 5 (2013) 1860-1866. https://doi.org/10.1016/j.ijcard.2012.04.156.

[38]

C. Boitani, R. Puglisi, Selenium, a key element in spermatogenesis and male fertility, Adv. Exp. Med. Biol. (2008) 65-73. https://doi.org/10.1007/978-0-387-09597-4_4.

[39]

F. Zhang, W. Yu, J.L. Hargrove, et al., Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium, Atherosclerosis 2 (2002) 381-386. https://doi.org/10.1016/s0021-9150(01)00672-4.

[40]

J. Xiao, N. Li, S. Xiao, et al., Comparison of selenium nanoparticles and sodium selenite on the alleviation of early atherosclerosis by inhibiting endothelial dysfunction and inflammation in apolipoprotein E-deficient mice, Int. J. Mol. Sci. 21 (2021) 11612. https://doi.org/10.3390/ijms222111612.

[41]

M. Kiełczykowska, J.M., Kocot, M. Paździor, et al., Selenium-a fascinating antioxidant of protective properties, Adv. Clin. Exp. Med. 2 (2018) 245-255. https://doi.org/10.17219/acem/67222.

[42]
X. Zhang, X. Li, W. Zhang, et al., Selenium and cardiovascular disease: epidemiological evidence of a possible U-shaped relationship. In: Michalke B(Ed.), Selenium, Springer International Publishing, Cham, 2018, pp. 303-316.
[43]

M. Zachariah, H. Maamoun, L. Milano, et al., Endoplasmic reticulum stress and oxidative stress drive endothelial dysfunction induced by high selenium, J. Cell. Physiol. 6 (2021) 4348-4359. https://doi.org/10.1002/jcp.30175.

[44]

M. Torzewski, V. Ochsenhirt, A.L. Kleschyov, et al., Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol. 4 (2007) 850-857. https://doi.org/10.1161/01.ATV.0000258809.47285.07.

[45]

P. Lewis, N. Stefanovic, J. Pete, et al., Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice, Circulation 16 (2007) 2178-2187. https://doi.org/10.1161/CIRCULATIONAHA.106.664250.

[46]

X. Wang, M.Z. Vatamaniuk, C.A. Roneker, et al., Knockouts of SOD1 and GPX1 exert different impacts on murine islet function and pancreatic integrity, Antioxid. Redox Sign. 3 (2011) 391-401. https://doi.org/10.1089/ars.2010.3302.

[47]

J.Q. Huang, J.C. Zhou, Y.Y. Wu, et al., Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases, Free Radic Biol. Med. 127 (2018) 108-115. https://doi.org/10.1016/j.freeradbiomed.2018.05.077.

[48]

P.J. Crack, K. Cimdins, U. Ali, et al., Lack of glutathione peroxidase-1 exacerbates Abeta-mediated neurotoxicity in cortical neurons, J. Neural Transm. (Vienna) 5 (2006) 645-657. https://doi.org/10.1007/s00702-005-0352-y.

[49]

E.J. Shin, Y.H. Chung, N. Sharma, et al., Glutathione peroxidase-1 knockout facilitates memory impairment induced by beta-amyloid (1–42) in mice via inhibition of PKC betaⅡ-mediated ERK signaling; application with glutathione peroxidase-1 gene-encoded adenovirus vector, Neurochem. Res. 12 (2020) 2991-3002. https://doi.org/10.1007/s11064-020-03147-3.

[50]

L.A. Seale, A.N. Ogawa-Wong, M.J. Berry, Sexual dimorphism in selenium metabolism and selenoproteins, Free Radic Biol. Med. 127 (2018) 198-205. https://doi.org/10.1016/j.freeradbiomed.2018.03.036.

[51]

J.L. Donadio, E.M. Guerra-Shinohara, M.M. Rogero, et al., Influence of gender and SNPs in GPX1 gene on biomarkers of selenium status in healthy Brazilians, Nutrients 5 (2016) 81. https://doi.org/10.3390/nu8050081.

[52]

M. Vinceti, T. Filippini, K.J. Rothman, Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis, Eur. J. Epidemiol. 9 (2018) 789-810. https://doi.org/10.1007/s10654-018-0422-8.

[53]

P. Vats, N. Sagar, T.P. Singh, et al., Association of superoxide dismutases (SOD1 and SOD2) and glutathione peroxidase 1 (GPx1) gene polymorphisms with type 2 diabetes mellitus, Free Radic. Res. 1 (2015) 17-24. https://doi.org/10.3109/10715762.2014.971782.

[54]

R.A. Sunde, A.M. Raines, K.M. Barnes, et al., Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome, Biosci. Rep. 5 (2009) 329-338. https://doi.org/10.1042/BSR20080146.

[55]

C.P. Liu, J. Fu, S.L. Lin, et al., Effects of dietary selenium deficiency on mRNA levels of twenty-one selenoprotein genes in the liver of layer chicken, Biol. Trace Elem. Res. 1/2/3 (2014) 192-198. https://doi.org/10.1007/s12011-014-0005-9.

[56]

Z. Touat-Hamici, A. Bulteau, J. Bianga, et al., Chavatte. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines, Biochim. Biophys. Acta. Gen. Subj. 1862 (2018) 2493-2505. https://doi.org/10.1016/j.bbagen.2018.04.012.

[57]

L. Latrèche, S. Duhieu, Z. Touat-Hamici, et al., The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element, RNA Biol. 9 (2012) 681-690. https://doi.org/10.4161/rna.20147.

[58]

S.W. Sachdev, R.A. Sunde, Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver, Biochem. J. 357 (2001) 851-858. https://doi.org/10.1042/0264-6021:3570851.

[59]

M. Hernández-Elvira, P. Sunnerhagen, Post-transcriptional regulation during stress, FEMS Yeast Res. 1 (2022) foac025. https://doi.org/10.1093/femsyr/foac025.

[60]

G. Eastman, P. Smircich, J.R. Sotelo-Silveira, Following ribosome footprints to understand translation at a genome wide level, Comput. Struct. Biotechnol. J. 16 (2018) 167-176. https://doi.org/10.1016/j.csbj.2018.04.001.

Food Science and Human Wellness
Article number: 9250125
Cite this article:
Lu J, Meng J, Lang Y, et al. The effects of selenium on the translation efficiency of selenoproteins GPX1, GPX4, and TXNRD1 in oxLDL-induced EA.hy926 cells. Food Science and Human Wellness, 2025, 14(1): 9250125. https://doi.org/10.26599/FSHW.2024.9250125
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return