PDF (1.6 MB)
Collect
Submit Manuscript
Article | Open Access

Natural product chlorogenic acid achieves pharmacological activity and health protection via regulating gut microbiota: a review

Ke Fua,1Shu Daia,1Yafang Zhanga,1Jia GongbCheng WangaChenhao YaoaShenglin ZhangaCheng PengaYunxia Lia()
State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
College of Enology, Northwest A&F University, Yangling 712100, China

1 These authors contributed equally to this work.

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Gut microbiota is a key target for chlorogenic acid (CA) to exert multiple health benefits.

• CA alters the structural composition of gut microbiota.

• CA regulates the balance between the microbiota and the intestinal immune system.

• CA increases the metabolites of gut microbiota, such as short-chain fatty acids.

Graphical Abstract

View original image Download original image

Abstract

Chlorogenic acid (CA) is a natural plant-derived polyphenol compound that is widely present in beverages (coffee and tea), fruits (blueberry, apple, and mulberry), and medicinal plants (Lonicera japonica, Eucommia ulmoides, and Cichorium intybus). In recent years, CA has attracted extensive attention due to its various health benefits, such as anti-inflammatory, immunomodulatory, anti-obesity, anti-diabetes mellitus, and neuroprotection activities. Interestingly, the low bioavailability of CA corresponds to high bioactivity, which raises a key scientific question of how low bioavailability CA can achieve high biological activity. In this review, we highlight the gut microbiota as a key target for connecting the two by summarizing a large amount of evidence. Specifically, the composition and abundance of gut microbiota, its metabolites, intestinal immunity, barrier function and so on were all changed under different pathological conditions such as inflammatory bowel disease, liver disease, kidney disease, cardiovascular disease, diabetes mellitus, obesity, etc. Conversely, these changes could be reversed by CA. In a word, CA could achieve pharmacological activity as well as health-protective effects by modulating intestinal immune and barrier function, gut microbiota composition, gut microbiota metabolites, and signaling pathways. This review provides new targets for the prevention and treatment of diseases by CA. Meanwhile, regulating the composition of the gut microbiota through natural products may be a potential strategy to achieve health protection.

References

[1]

S.R. Gill, M. Pop, R.T. Deboy, et al., Metagenomic analysis of the human distal gut microbiome, Science 312 (2006) 1355-1359. https://doi.org/10.1126/science.1124234.

[2]

V. Tremaroli, F. Bäckhed, Functional interactions between the gut microbiota and host metabolism, Nature 489 (2012) 242-249. https://doi.org/10.1038/nature11552.

[3]

Q. Ma, Y. Li, P. Li, et al., Research progress in the relationship between type 2 diabetes mellitus and intestinal flora, Biomed. Pharmacother. 117 (2019) 109138. https://doi.org/10.1016/j.biopha.2019.109138.

[4]

E.A. Franzosa, X.C. Morgan, N. Segata, et al., Relating the metatranscriptome and metagenome of the human gut, Proc. Natl. Acad. Sci. 111 (2014) E2329-E2338. https://doi.org/10.1073/pnas.1319284111.

[5]

R.E. Ley, C.A. Lozupone, M. Hamady, et al., Worlds within worlds: evolution of the vertebrate gut microbiota, Nat. Rev. Microbiol. 6 (2008) 776-788. https://doi.org/10.1038/nrmicro1978.

[6]

A. Adak, M.R. Khan, An insight into gut microbiota and its functionalities, Cell Mol. Life Sci. 76 (2019) 473-493. https://doi.org/10.1007/s00018-018-2943-4.

[7]

B.S. Hanna, G. Wang, S. Galván-Peña, et al., The gut microbiota promotes distal tissue regeneration via RORγ+ regulatory T cell emissaries, Immunity 56(4) (2023) 829-846. https://doi.org/10.1016/j.immuni.2023.01.033.

[8]

Y. Mishima, A. Oka, B. Liu, et al., Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells, J. Clin. Invest. 129 (2019) 3702-3716. https://doi.org/10.1172/JCI93820.

[9]

W. Yang, T. Yu, X. Huang, et al., Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity, Nat. Commun. 11 (2020) 4457. https://doi.org/10.1038/s41467-020-18262-6.

[10]

K. Fu, C. Ma, C. Wang, et al., Forsythiaside A alleviated carbon tetrachloride-induced liver fibrosis by modulating gut microbiota composition to increase short-chain fatty acids and restoring bile acids metabolism disorder, Biomed. Pharmacother. 151 (2022) 113185. https://doi.org/10.1016/j.biopha.2022.113185.

[11]

H. Lu, Z. Tian, Y. Cui, et al., Chlorogenic acid: a comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions, Compr. Rev. Food Sci. Food Saf. 19 (2020) 3130-3158. https://doi.org/10.1111/1541-4337.12620.

[12]

S. Lecour, K.T. Lamont, Natural polyphenols and cardioprotection, Mini. Rev. Med. Chem. 11 (2011) 1191-1199. https://doi.org/10.2174/13895575111091191.

[13]

Y. Zhou, J. Zheng, Y. Li, et al., Natural polyphenols for prevention and treatment of cancer, Nutrients 8(8) (2016) 515. https://doi.org/10.3390/nu8080515.

[14]

M.L.Y. Wan, V.A. Co, H. El-Nezami, Dietary polyphenol impact on gut health and microbiota, Crit. Rev. Food Sci. Nutr. 61 (2021) 690-711. https://doi.org/10.1080/10408398.2020.1744512.

[15]

S.V. Luca, I. Macovei, A. Bujor, et al., Bioactivity of dietary polyphenols: the role of metabolites, Crit. Rev. Food Sci. Nutr. 60 (2020) 626-659. https://doi.org/10.1080/10408398.2018.1546669.

[16]

M. Messaoudene, R. Pidgeon, C. Richard, et al., A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota, Cancer Discov. 12 (2022) 1070-1087. https://doi.org/10.1158/2159-8290.CD-21-0808.

[17]

Z. Wu, S. Huang, T. Li, et al., Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis, Microbiome 9 (2021) 184. https://doi.org/10.1186/s40168-021-01115-9.

[18]

P. Wang, D. Li, W. Ke, et al., Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice, Int. J. Obes. 44 (2020) 213-225. https://doi.org/10.1038/s41366-019-0332-1.

[19]

C. Li, N. Wang, G. Zheng, et al., Oral administration of resveratrol-selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota, ACS Appl. Mater. Interfaces 13 (2021) 46406-46420. https://doi.org/10.1021/acsami.1c14818.

[20]

F.F. Anhê, D. Roy, G. Pilon, et al., A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice, Gut 64 (2015) 872-883. https://doi.org/10.1136/gutjnl-2014-307142.

[21]

F. Cardona, C. Andrés-Lacueva, S. Tulipani, et al., Benefits of polyphenols on gut microbiota and implications in human health, J. Nutr. Biochem. 24 (2013) 1415-1422. https://doi.org/10.1016/j.jnutbio.2013.05.001.

[22]

C.G. Fraga, K.D. Croft, D.O. Kennedy, et al., The effects of polyphenols and other bioactives on human health, Food Funct. 10 (2019) 514-528. https://doi.org/10.1039/c8fo01997e.

[23]

A.S. Cho, S.M. Jeon, M.J. Kim, et al., Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice, Food Chem. Toxicol. 48 (2010) 937-943. https://doi.org/10.1016/j.fct.2010.01.003.

[24]

M.R. Preetha Rani, P. Salin Raj, A. Nair, et al., In vitro and in vivo studies reveal the beneficial effects of chlorogenic acid against ER stress mediated ER-phagy and associated apoptosis in the heart of diabetic rat, Chem. Biol. Interact. 351 (2022) 109755. https://doi.org/10.1016/j.cbi.2021.109755.

[25]

S. Huang, L.L. Wang, N.N. Xue, et al., Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation, Theranostics 9 (2019) 6745-6763. https://doi.org/10.7150/thno.34674.

[26]

L. Wang, H. Du, P. Chen, Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo, Biomed. Pharmacother. 131 (2020) 110673. https://doi.org/10.1016/j.biopha.2020.110673.

[27]

Y. Li, D. Shen, X. Tang, et al., Chlorogenic acid prevents isoproterenol-induced hypertrophy in neonatal rat myocytes, Toxicol. Lett. 226 (2014) 257-263. https://doi.org/10.1016/j.toxlet.2014.02.016.

[28]

Y. Liu, J. Guo, J. Zhang, et al., Chlorogenic acid alleviates thioacetamide-induced toxicity and promotes liver development in zebrafish (Danio rerio) through the Wnt signaling pathway, Aquat. Toxicol. 242 (2022) 106039. https://doi.org/10.1016/j.aquatox.2021.106039.

[29]

J. Shi, X. Chang, H. Zou, et al., Protective effects of α-lipoic acid and chlorogenic acid on cadmium-induced liver injury in three-yellow chickens, Animals 11 (2021). https://doi.org/10.3390/ani11061606.

[30]

J. Yunus, M. Salman, G.B.R. Lintin, et al., Chlorogenic acid attenuates kidney fibrosis via antifibrotic action of BMP-7 and HGF, Med. J. Malaysia 75 (2020) 5-9.

[31]

Y. Qin, S. Wang, W. Huang, et al., Chlorogenic acid improves intestinal morphology by enhancing intestinal stem-cell activity, J. Sci. Food Agric. 103 (2023) 3287-3294. https://doi.org/10.1002/jsfa.12469.

[32]

W. Gao, C. Wang, L. Yu, et al., Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway, Biomed. Res. Int. 2019 (2019) 6769789. https://doi.org/10.1155/2019/6769789.

[33]

Y. Zheng, L. Li, B. Chen, et al., Chlorogenic acid exerts neuroprotective effect against hypoxia-ischemia brain injury in neonatal rats by activating Sirt1 to regulate the Nrf2-NF-κB signaling pathway, Cell Commun. Signal. 20 (2022) 84. https://doi.org/10.1186/s12964-022-00860-0.

[34]

D. Liu, H. Wang, Y. Zhang, et al., Protective Effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway, Drug Des. Devel. Ther. 14 (2020) 51-60. https://doi.org/10.2147/DDDT.S228751.

[35]

F. He, F. Gao, N. Cai, et al., Chlorogenic acid enhances alveolar macrophages phagocytosis in acute respiratory distress syndrome by activating G protein-coupled receptor 37 (GPR 37), Phytomedicine 107 (2022) 154474. https://doi.org/10.1016/j.phymed.2022.154474.

[36]

N. Xue, Y. Liu, J. Jin, et al., Chlorogenic acid prevents UVA-induced skin photoaging through regulating collagen metabolism and apoptosis in human dermal fibroblasts, Int. J. Mol. Sci. 23(13) (2022) 6941. https://doi.org/10.3390/ijms23136941.

[37]

N. Tajik, M. Tajik, I. Mack, et al., The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature, Eur. J. Nutr. 56 (2017) 2215-2244. https://doi.org/10.1007/s00394-017-1379-1.

[38]

F. Ianni, C. Barola, F. Blasi, et al., Investigation on chlorogenic acid stability in aqueous solution after microwave treatment, Food Chem. 374 (2022) 131820. https://doi.org/10.1016/j.foodchem.2021.131820.

[39]

W. Wang, C. Wen, Q. Guo, et al., Biological activity and mechanism of chlorogenic acid, Chinese Journal of Animal Nutrition 29 (2017) 2220-2227. https://doi.org/10.3389/fphar.2023.1218015.

[40]

L. Wang, X. Pan, L. Jiang, et al., The biological activity mechanism of chlorogenic acid and its applications in food industry: a review, Front. Nutr. 9 (2022) 943911. https://doi.org/10.3389/fnut.2022.943911.

[41]

V. Raskar, M.R. Bhalekar, Formulation of coffee bean extract (chlorogenic acid) solid lipid nanoparticles for lymphatic uptake on oral administration, J. Drug Deliv. Therapeut. 9 (2019) 477-484. http://dx.doi.org/10.22270/jddt.v9i4.3201.

[42]

W. Tang, G. Li, K.H. Row, et al., Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea, Talanta 152 (2016) 1-8. https://doi.org/10.1016/j.talanta.2016.01.046.

[43]

X.H.Ye, F. Zhao, L.M. He, et al., HPLC analysis of main polyphenol compounds in black tea, Fujian Tea Journal 36 (2014) 18-23.

[44]

A.D. Meinhart, F.M. Damin, L. Caldeirão, et al., Chlorogenic and caffeic acids in 64 fruits consumed in Brazil, Food Chem. 286 (2019) 51-63. https://doi.org/10.1016/j.foodchem.2019.02.004.

[45]

C. Luo, X. Wang, G. Gao, et al., Identification and quantification of free, conjugate and total phenolic compounds in leaves of 20 sweetpotato cultivars by HPLC-DAD and HPLC-ESI-MS/MS, Food Chem. 141 (2013) 2697-2706. https://doi.org/10.1016/j.foodchem.2013.05.009.

[46]

A. Kundu, J. Vadassery, Chlorogenic acid-mediated chemical defence of plants against insect herbivores, Plant Biol. 21 (2019) 185-189. https://doi.org/10.1111/plb.12947.

[47]

M.N. Clifford, I.B. Jaganath, I.A. Ludwig, et al. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity, Nat. Prod. Rep. 34(12) (2017) 1391-1421. https://doi:10.1039/c7np00030h.

[48]

J.K. Moon, H.S. Yoo, T. Shibamoto, Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity, J. Agric. Food Chem. 57 (2009) 5365-5369. https://doi.org/10.1021/jf900012b.

[49]

A.V. Sirotkin, A. Kolesárová, The anti-obesity and health-promoting effects of tea and coffee, Physiol. Res. 70 (2021) 161-168. https://doi.org/10.33549/physiolres.934674.

[50]

Y. Xi, D. Cheng, X. Zeng, et al., Evidences for chlorogenic acid: a major endogenous polyphenol involved in regulation of ripening and senescence of apple fruit, PLoS ONE 11 (2016) e0146940. https://doi.org/10.1371/journal.pone.0146940.

[51]

Y. Zhou, Z. Ruan, Y. Wen, et al., Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion, J. Clin. Biochem. Nutr. 58 (2016) 146-155. https://doi.org/10.3164/jcbn.14-138.

[52]

S. Hao, Y. Xiao, Y. Lin, et al., Chlorogenic acid-enriched extract from Eucommia ulmoides leaves inhibits hepatic lipid accumulation through regulation of cholesterol metabolism in HepG2 cells, Pharm. Biol. 54 (2016) 251-259. https://doi.org/10.3109/13880209.2015.1029054.

[53]

X.Q. Zhao, S. Guo, Y.Y. Lu, et al., Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition, Biomed. Pharmacother. 121 (2020) 109559. https://doi.org/10.1016/j.biopha.2019.109559.

[54]

Q. Wang, Q. Chen, M. He, et al., Inhibitory effect of antioxidant extracts from various potatoes on the proliferation of human colon and liver cancer cells, Nutr. Cancer 63 (2011) 1044-1052. https://doi.org/10.1080/01635581.2011.597538.

[55]

J. Yin, J. Qu, W. Zhang, et al., Tissue distribution comparison between healthy and fatty liver rats after oral administration of hawthorn leaf extract, Biomed. Chromatogr. 28 (2014) 637-647. https://doi.org/10.1002/bmc.3082.

[56]

S.M. Kim, Y.F. Shang, B.H. Um, Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry leaves (Vaccinium corymbosum L.), Phytochem. Anal. 21 (2010) 457-462. https://doi.org/10.1002/pca.1218.

[57]

T.Y. Yang, M.H. Yu, Y.L. Wu, et al., Mulberry leaf (Morus alba L.) extracts and its chlorogenic acid isomer component improve glucolipotoxicity-induced hepatic lipid accumulation via downregulating miR-34a and decreased inflammation, Nutrients 14(22) (2022) 4808. https://doi.org/10.3390/nu14224808.

[58]

N. Ziamajidi, S. Khaghani, G. Hassanzadeh, et al., Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1, Food Chem. Toxicol. 58 (2013) 198-209. https://doi.org/10.1016/j.fct.2013.04.018.

[59]

A.V.A. Mariadoss, S. Park, K. Saravanakumar, et al., Ethyl acetate fraction of Helianthus tuberosus L. induces anti-diabetic, and wound-healing activities in insulin-resistant human liver cancer and mouse fibroblast cells, Antioxidants 10(1) (2021) 99. https://doi.org/10.3390/antiox10010099.

[60]

M.R. Olthof, P.C. Hollman, M.B. Katan, Chlorogenic acid and caffeic acid are absorbed in humans, J. Nutr. 131 (2001) 66-71. https://doi.org/10.1093/jn/131.1.66.

[61]

S. Lafay, A. Gil-Izquierdo, C. Manach, et al., Chlorogenic acid is absorbed in its intact form in the stomach of rats, J. Nutr. 136 (2006) 1192-1197. https://doi.org/10.1093/jn/136.5.1192.

[62]

Y. Zhou, T. Zhou, Q. Pei, et al., Pharmacokinetics and tissue distribution study of chlorogenic acid from Lonicerae japonicae flos following oral administrations in rats, Evid. Based Compl. Alt. 2014 (2014) 979414. https://doi.org/10.1155/2014/979414.

[63]

G. Kumar, P. Paliwal, S. Mukherjee, et al., Pharmacokinetics and brain penetration study of chlorogenic acid in rats, Xenobiotica 49 (2019) 339-345. https://doi.org/10.1080/00498254.2018.1445882.

[64]

F. Tomas-Barberan, R. García-Villalba, A. Quartieri, et al., In vitro transformation of chlorogenic acid by human gut microbiota, Mol. Nutr. Food Res. 58 (2014) 1122-1131. https://doi.org/10.1002/mnfr.201300441.

[65]

A.R. Rechner, J.P. Spencer, G. Kuhnle, et al., Novel biomarkers of the metabolism of caffeic acid derivatives in vivo, Free Radical Bio. Med. 30 (2001) 1213-1222. https://doi.org/10.1016/S0891-5849(01)00506-8.

[66]

D. Del Rio, A. Stalmach, L. Calani, et al., Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols, Nutrients 2 (2010) 820-833. https://doi.org/10.3390/nu2080820.

[67]

M. Naveed, V. Hejazi, M. Abbas, et al., Chlorogenic acid (CGA): a pharmacological review and call for further research, Biomed. Pharmacother. 97 (2018) 67-74. https://doi.org/10.1016/j.biopha.2017.10.064.

[68]

K. Kishida, H. Matsumoto, Urinary excretion rate and bioavailability of chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid in non-fasted rats maintained under physiological conditions, Heliyon 5 (2019) e02708. https://doi.org/10.1016/j.heliyon.2019.e02708.

[69]

W. Qi, T. Zhao, W.W. Yang, et al., Comparative pharmacokinetics of chlorogenic acid after oral administration in rats, J. Pharm. Anal. 1 (2011) 270-274. https://doi.org/10.1016/j.jpha.2011.09.006.

[70]

J. Barre, G. Houin, F. Brunner, et al., Disease-induced modifications of drug pharmacokinetics, Int. J. Clin. Pharmacol. Res. 3 (1983) 215-226.

[71]

R. Gao, Y. Lin, G. Liang, et al., Comparative pharmacokinetic study of chlorogenic acid after oral administration of Lonicerae japonicae Flos and Shuang-Huang-Lian in normal and febrile rats, Phytother. Res. 28 (2014) 144-147. https://doi.org/10.1002/ptr.4958.

[72]

S. Chen, M. Li, Y. Li, et al., A UPLC-ESI-MS/MS method for simultaneous quantitation of chlorogenic acid, scutellarin, and scutellarein in rat plasma: application to a comparative pharmacokinetic study in sham-operated and MCAO rats after oral administration of Erigeron breviscapus Extract, Molecules 23(7) (2018) 1808. https://doi.org/10.3390/molecules23071808.

[73]

M. Monteiro, A. Farah, D. Perrone, et al., Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans, J. Nutr. 137 (2007) 2196-2201. https://doi.org/10.1093/jn/137.10.2196.

[74]

F. Yang, J.F. Gong, L. Shen, et al., Development of an LC-MS/MS method for quantitative analysis of chlorogenic acid in human plasma and its application to a pharmacokinetic study in Chinese patients with advanced solid tumor, J. Pharm. Biomed. Anal. 177 (2020) 112809. https://doi.org/10.1016/j.jpba.2019.112809.

[75]

W.G. Choi, J.H. Kim, D.K. Kim, et al., Simultaneous determination of chlorogenic acid isomers and metabolites in rat plasma using LC-MS/MS and its application to a pharmacokinetic study following oral administration of Stauntonia hexaphylla leaf extract (YRA-1909) to Rats, Pharmaceutics 10(3) (2018) 143. https://doi.org/10.3390/pharmaceutics10030143.

[76]

P. Shi, C. Yang, Y. Su, et al., Simultaneous determination of five phenolic acids and four flavonoid glycosides in rat plasma using HPLC-MS/MS and its application to a pharmacokinetic study after a single intravenous administration of kudiezi injection, Molecules 24(1) (2018) 64. https://doi.org/10.3390/molecules24010064.

[77]

R. Liu, K. Lai, Y. Xiao, et al., Comparative pharmacokinetics of chlorogenic acid in beagles after oral administrations of single compound, the extracts of Lonicera japanica, and the mixture of chlorogenic acid, baicalin, and forsythia suspense, Pharm. Biol. 55 (2017) 1234-1238. https://doi.org/10.1080/13880209.2017.1296002.

[78]

Y. Wang, J. Wen, W. Zheng, et al., Simultaneous determination of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and geniposide in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study after administration of reduning injection, Biomed. Chromatogr. 29 (2015) 68-74. https://doi.org/10.1002/bmc.3241.

[79]

L. Zhao, X. Qian, W. Li, et al., An LC-MS/MS method for the simultaneous determination and pharmacokinetic studies of bergenin, chlorogenic acid and four flavonoids in rat plasma after oral administration of a QingGanSanJie decotion extract, Biomed. Chromatogr. 28 (2014) 1670-1678. https://doi.org/10.1002/bmc.3200.

[80]

J. Zhang, M. Chen, W. Ju, et al., Liquid chromatograph/tandem mass spectrometry assay for the simultaneous determination of chlorogenic acid and cinnamic acid in plasma and its application to a pharmacokinetic study, J. Pharm. Biomed. Anal. 51 (2010) 685-690. https://doi.org/10.1016/j.jpba.2009.09.039.

[81]

P. Gu, R.J. Liu, M.L. Cheng, et al., Simultaneous quantification of chlorogenic acid and taurocholic acid in human plasma by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Shuanghua Baihe tablets, Chin. J. Nat. Med. 14 (2016) 313-320. https://doi.org/10.1016/S1875-5364(16)30034-6.

[82]

A. Mansour, M.R. Mohajeri-Tehrani, S. Karimi, et al., Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: a pilot randomized placebo-controlled, clinical trial, EXCLI J. 19 (2020) 241-250. https://doi.org/10.17179/excli2019-2021.

[83]

J. Chen, B. Yu, D. Chen, et al., Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation, Appl. Microbiol. Biotechnol. 103 (2019) 8157-8168. https://doi.org/10.1007/s00253-019-10025-8.

[84]

J. Song, N. Zhou, W. Ma, et al., Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior, Food Funct. 10 (2019) 2947-2957. https://doi.org/10.1039/c8fo02599a.

[85]

Y. Liu, Y. Zhang, D. Bai, et al., Dietary supplementation with chlorogenic acid enhances antioxidant capacity, which promotes growth, jejunum barrier function, and cecum microbiota in broilers under high stocking density stress, Animals 13(2) (2023) 303. https://doi.org/10.3390/ani13020303.

[86]

R. Zhang, X. Kang, L. Liu, et al., Gut microbiota modulation by plant polyphenols in koi carp (Cyprinus carpio L.), Front. Microbiol. 13 (2022) 977292. https://doi.org/10.3389/fmicb.2022.977292.

[87]

R. Hodson, Inflammatory bowel disease, Nature 540 (2016) S97. https://doi.org/10.1038/540S97a.

[88]

B. Khor, A. Gardet, R.J. Xavier, Genetics and pathogenesis of inflammatory bowel disease, Nature 474 (2011) 307-317. https://doi.org/10.1038/nature10209.

[89]

E.K. Wright, N.S. Ding, O. Niewiadomski, Management of inflammatory bowel disease, Med. J. Aust. 209 (2018) 318-323. https://doi.org/10.5694/mja17.01001.

[90]

J. Zeng, D. Zhang, X. Wan, et al., Chlorogenic acid suppresses mir-155 and ameliorates ulcerative colitis through the NF-κB/NLRP3 inflammasome pathway, Mol. Nutr. Food Res. 64(23) (2020) e2000452. https://doi.org/10.1002/mnfr.202000452.

[91]

I. Vukelić, D. Detel, L.B. Pučar, et al., Chlorogenic acid ameliorates experimental colitis in mice by suppressing signaling pathways involved in inflammatory response and apoptosis, Food Chem. Toxicol. 121 (2018) 140-150. https://doi.org/10.1016/j.fct.2018.08.061.

[92]

L.A. Maslin, B.R. Weeks, R.J. Carroll, et al., Chlorogenic acid and quercetin in a diet with fermentable fiber influence multiple processes involved in DSS-induced ulcerative colitis but do not reduce injury, Nutrients 14(18) (2022) 3706. https://doi.org/10.3390/nu14183706.

[93]

Y. Yan, X. Zhou, K. Guo, et al., Chlorogenic acid protects against indomethacin-induced inflammation and mucosa damage by decreasing Bacteroides-derived LPS, Front. Immunol. 11 (2020) 1125. https://doi.org/10.3389/fimmu.2020.01125.

[94]

P. Zhang, H. Jiao, C. Wang, et al., Chlorogenic acid ameliorates colitis and alters colonic microbiota in a mouse model of dextran sulfate sodium-induced colitis, Front. Physiol. 10 (2019) 325. https://doi.org/10.3389/fphys.2019.00325.

[95]

Z. Zhang, X. Wu, S. Cao, et al., Chlorogenic acid ameliorates experimental colitis by promoting growth of Akkermansia in mice, Nutrients 9(7) (2017) 677. https://doi.org/10.3390/nu9070677.

[96]

V.F. Rodrigues, J. Elias-Oliveira, Í.S. Pereira, et al., Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes, Front. Immunol. 13 (2022) 934695. https://doi.org/10.3389/fimmu.2022.934695.

[97]

M. Xie, X. Zhang, X. Wang, et al., Effects of arabinoxylan and chlorogenic acid on the intestinal microbiota in dextran sulfate sodium-treated mice, Front. Nutr. 9 (2022) 950446. https://doi.org/10.3389/fnut.2022.950446.

[98]

R. Wei, Z. Su, G.G. Mackenzie, Chlorogenic acid combined with epigallocatechin-3-gallate mitigates D-galactose-induced gut aging in mice, Food Funct. 14 (2023) 2684-2697. https://doi.org/10.1039/d2fo03306b.

[99]

M.G. Xie, Y.Q. Fei, Y. Wang, et al., Chlorogenic acid alleviates colon mucosal damage induced by a high-fat diet via gut microflora adjustment to increase short-chain fatty acid accumulation in rats, Oxid. Med. Cell Longev. 2021 (2021) 3456542. https://doi.org/10.1155/2021/3456542.

[100]

X. Shen, A. Zhang, J. Gu, et al., Evaluating Salmonella pullorum dissemination and shedding patterns and antibody production in infected chickens, BMC Vet. Res. 18 (2022) 240. https://doi.org/10.1186/s12917-022-03335-z.

[101]

J. Huang, L. Liang, K. Cui, et al., Salmonella phage CKT1 significantly relieves the body weight loss of chicks by normalizing the abnormal intestinal microbiome caused by hypervirulent Salmonella pullorum, Poult. Sci. 101 (2022) 101668. https://doi.org/10.1016/j.psj.2021.101668.

[102]

W.W. Wang, H.J. Jia, H.J. Zhang, et al., Supplemental plant extracts from Flos Lonicerae in combination with baikal skullcap attenuate intestinal disruption and modulate gut microbiota in laying hens challenged by Salmonella pullorum, Front. Microbiol. 10 (2019) 1681. https://doi.org/10.3389/fmicb.2019.01681.

[103]

F. Chen, H. Zhang, N. Zhao, et al., Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress, Anim. Sci. J. 92 (2021) e13619. https://doi.org/10.1111/asj.13619.

[104]

A. Shi, T. Li, Y. Zheng, et al., Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1, Front. Pharmacol. 12 (2021) 693048. https://doi.org/10.3389/fphar.2021.693048.

[105]

H. Zhu, W. Jiang, C. Liu, et al., Ameliorative effects of chlorogenic acid on alcoholic liver injury in mice via gut microbiota informatics, Eur. J. Pharmacol. 928 (2022) 175096. https://doi.org/10.1016/j.ejphar.2022.175096.

[106]

J. Chen, L. Vitetta, Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications, Int. J. Mol. Sci. 21 (2020). https://doi.org/10.3390/ijms21155214.

[107]

Y. Furusawa, Y. Obata, S. Fukuda, et al., Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature 504 (2013) 446-450. https://doi.org/10.1038/nature12721.

[108]

I.D. de Souza, A.S. de Andrade, R.J.S. Dalmolin, Lead-interacting proteins and their implication in lead poisoning, Crit. Rev. Toxicol. 48 (2018) 375-386. https://doi.org/10.1080/10408444.2018.1429387.

[109]

Y. Ding, X. Li, Y. Liu, et al., Protection mechanisms underlying oral administration of chlorogenic acid against cadmium-induced hepatorenal injury related to regulating intestinal flora balance, J. Agric. Food Chem. 69 (2021) 1675-1683. https://doi.org/10.1021/acs.jafc.0c06698.

[110]

D. Cheng, H. Li, J. Zhou, et al., Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice, Food Funct. 10 (2019) 681-690. https://doi.org/10.1039/c8fo01755g.

[111]

J. Pekala, B. Patkowska-Sokoła, R. Bodkowski, et al., L-Carnitine: metabolic functions and meaning in humans life, Curr. Drug Metab. 12 (2011) 667-678. https://doi.org/10.2174/138920011796504536.

[112]

F. Jacques, S. Rippa, Y. Perrin, Physiology of L-carnitine in plants in light of the knowledge in animals and microorganisms, Plant Sci. 274 (2018) 432-440. https://doi.org/10.1016/j.plantsci.2018.06.020.

[113]

X. Zhang, L. Shi, R. Chen, et al., Chlorogenic acid inhibits trimethylamine-N-oxide formation and remodels intestinal microbiota to alleviate liver dysfunction in high L-carnitine feeding mice, Food Funct. 12 (2021) 10500-10511. https://doi.org/10.1039/d1fo01778k.

[114]

X. Zhou, B. Zhang, X. Zhao, et al., Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis, Food Funct. 12 (2021) 5637-5649. https://doi.org/10.1039/d0fo03199b.

[115]

X. Zhou, B. Zhang, X. Zhao, et al., Chlorogenic acid prevents hyperuricemia nephropathy via regulating TMAO-related gut microbes and inhibiting the PI3K/AKT/mTOR pathway, J. Agric. Food Chem. 70 (2022) 10182-10193. https://doi.org/10.1021/acs.jafc.2c03099.

[116]

X. Wu, J. Wang, B. Li, et al., Chlorogenic acid, rutin, and quercetin from Lysimachia christinae alleviate triptolide-induced multi-organ injury in vivo by modulating immunity and AKT/mTOR signal pathway to inhibit ferroptosis and apoptosis, Toxicol. Appl. Pharmacol. 467 (2023) 116479. https://doi.org/10.1016/j.taap.2023.116479.

[117]

N.S. Bhandarkar, L. Brown, S.K. Panchal, Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats, Nutr. Res. 62 (2019) 78-88. https://doi.org/10.1016/j.nutres.2018.11.002.

[118]

S. Jain, P. Saha, N.P. Syamprasad, et al., Targeting TLR4/3 using chlorogenic acid ameliorates LPS+POLY I:C-induced acute respiratory distress syndrome via alleviating oxidative stress-mediated NLRP3/NF-κB axis, Clin. Sci. 137 (2023) 785-805. https://doi.org/10.1042/CS20220625.

[119]

H. Yu, J. Fu, H.H. Guo, et al., Metabolites analysis of anti-myocardial ischemia active components of Saussurea involucrata based on gut microbiota-drug interaction, Int. J. Mol. Sci. 23(13) (2022) 7457. https://doi.org/10.3390/ijms23137457.

[120]

T. Ikeda, A. Nishida, M. Yamano, et al., Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases, Pharmacol. Ther. 239 (2022) 108273. https://doi.org/10.1016/j.pharmthera.2022.108273.

[121]

J. He, P. Zhang, L. Shen, et al., Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism, Int. J. Mol. Sci. 21(17) (2020) 6356. https://doi.org/10.3390/ijms21176356.

[122]

D.L. Eizirik, L. Pasquali, M. Cnop, Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure, Nat. Rev. Endocrinol. 16 (2020) 349-362. https://doi.org/10.1038/s41574-020-0355-7.

[123]

A.M. Schmidt, Highlighting diabetes mellitus: the epidemic continues, Arterioscl. Throm. Vas. 38 (2018) e1-e8. https://doi.org/10.1161/ATVBAHA.117.310221.

[124]

Y. Zheng, S.H. Ley, F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications, Nat. Rev. Endocrinol. 14 (2018) 88-98. https://doi.org/10.1038/nrendo.2017.151.

[125]

G. Budryn, D. Zaczyńska, D. Żyżelewicz, et al., Influence of the form of administration of chlorogenic acids on oxidative stress induced by high fat diet in rats, Plant Foods Hum. Nutr. 72 (2017) 184-191. https://doi.org/10.1007/s11130-017-0608-3.

[126]

M. Gondi, U.J.S. Prasada Rao, Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats, J. Food Sci. Technol. 52 (2015) 7883-7893. https://doi.org/10.1007/s13197-015-1963-4.

[127]

A.H. Lee, L.b. Tan, N. Hiramatsu, et al., Plasma concentrations of coffee polyphenols and plasma biomarkers of diabetes risk in healthy Japanese women, Nutr. Diabetes 6 (2016) e212. https://doi.org/10.1038/nutd.2016.19.

[128]

C. Guo, X. Zhang, Y. Yu, et al., Lonicerae Japonicae Flos extract and chlorogenic acid attenuates high-fat-diet- induced prediabetes via CTRPs-AdipoRs-AMPK/PPARα axes, Front. Nutr. 9 (2022) 1007679. https://doi.org/10.3389/fnut.2022.1007679.

[129]

L. Liu, J. Zhang, Y. Cheng, et al., Gut microbiota: a new target for T2DM prevention and treatment, Front. Endocrinol. 13 (2022) 958218. https://doi.org/10.3389/fendo.2022.958218.

[130]

Z. Zhou, B. Sun, D. Yu, et al., Gut microbiota: an important player in type 2 diabetes mellitus, Front. Cell Infect. Microbiol. 12 (2022) 834485. https://doi.org/10.3389/fcimb.2022.834485.

[131]

L. Deng, Y. Yang, G. Xu, Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota, Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1867 (2022) 159234. https://doi.org/10.1016/j.bbalip.2022.159234.

[132]

Y. Yan, Q. Li, L. Shen, et al., Chlorogenic acid improves glucose tolerance, lipid metabolism, inflammation and microbiota composition in diabetic db/db mice, Front. Endocrinol. 13 (2022) 1042044. https://doi.org/10.3389/fendo.2022.1042044.

[133]

Z. Zhou, D. Wang, X. Xu, et al., Myofibrillar protein-chlorogenic acid complexes ameliorate glucose metabolism via modulating gut microbiota in a type 2 diabetic rat model, Food Chem. 409 (2023) 135195. https://doi.org/10.1016/j.foodchem.2022.135195.

[134]

M.A. Shah, J.B. Kang, D.J. Park, et al., Chlorogenic acid alleviates cerebral ischemia-induced neuroinflammation via attenuating nuclear factor kappa B activation, Neurosci. Lett. 773 (2022) 136495. https://doi.org/10.1016/j.neulet.2022.136495.

[135]

M. Liu, H. Pi, Y. Xi, et al., KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity, Autophagy 17 (2021) 903-924. https://doi.org/10.1080/15548627.2020.1739444.

[136]

Y. Xi, H. Li, M. Yu, et al., Protective effects of chlorogenic acid on trimethyltin chloride-induced neurobehavioral dysfunctions in mice relying on the gut microbiota, Food Funct. 13 (2022) 1535-1550. https://doi.org/10.1039/d1fo03334d.

[137]

P. Kannampalli, S. Pochiraju, M. Chichlowski, et al., Probiotic Lactobacillus rhamnosus GG (LGG) and prebiotic prevent neonatal inflammation-induced visceral hypersensitivity in adult rats, Neurogastroenterol. Motil. 26 (2014) 1694-1704. https://doi.org/10.1111/nmo.12450.

[138]

C. Karen, D.J.H. Shyu, K.E. Rajan, Lactobacillus paracasei supplementation prevents early life stress-induced anxiety and depressive-like behavior in maternal separation model-possible involvement of microbiota-gut-brain axis in differential regulation of microRNA124a/132 and glutamate receptors, Front. Neurosci. 15 (2021) 719933. https://doi.org/10.3389/fnins.2021.719933.

[139]

B. Dalile, L. van Oudenhove, B. Vervliet, et al., The role of short-chain fatty acids in microbiota-gut-brain communication, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 461-478. https://doi.org/10.1038/s41575-019-0157-3.

[140]

S.Q. Zhang, D. Tian, C.Y. Hu, et al., Chlorogenic acid ameliorates high-fat and high-fructose diet-induced cognitive impairment via mediating the microbiota-gut-brain axis, J. Agric. Food Chem. 70 (2022) 2600-2615. https://doi.org/10.1021/acs.jafc.1c07479.

[141]

Z. Li, G. Zheng, N. Wang, et al., A flower-like brain targeted selenium nanocluster lowers the chlorogenic acid dose for ameliorating cognitive impairment in APP/PS1 mice, J. Agric. Food Chem. 71 (2023) 2883-2897. https://doi.org/10.1021/acs.jafc.2c068092883.

[142]

Z. Wang, K.L. Lam, J. Hu, et al., Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice, Food Sci. Nutr. 7 (2019) 579-588. https://doi.org/10.1002/fsn3.868.

[143]

Q. Wang, K. Xu, X. Cai, et al., Rosmarinic acid restores colonic mucus secretion in colitis mice by regulating gut microbiota-derived metabolites and the activation of inflammasomes, J. Agric. Food Chem. 71 (2023) 4571-4585. https://doi.org/10.1021/acs.jafc.2c08444.

[144]

Z. Wang, Y. Sun, Y. Han, et al., Eucommia bark/leaf extract improves HFD-induced lipid metabolism disorders via targeting gut microbiota to activate the Fiaf-LPL gut-liver axis and SCFAs-GPR43 gut-fat axis, Phytomedicine 110 (2023) 154652. https://doi.org/10.1016/j.phymed.2023.154652.

[145]

Q. Zhu, Y. Zhu, Y. Liu, et al., Moderation of gut microbiota and bile acid metabolism by chlorogenic acid improves high-fructose-induced salt-sensitive hypertension in mice, Food Funct. 13 (2022) 6987-6999. https://doi.org/10.1039/d2fo00038e.

[146]

X. Ye, Y. Liu, J. Hu, et al., Chlorogenic acid-induced gut microbiota improves metabolic endotoxemia, Front. Endocrinol. 12 (2021) 762691. https://doi.org/10.3389/fendo.2021.762691.

[147]

W. Niu, Y. Chen, L. Wang, et al., The combination of sodium alginate and chlorogenic acid enhances the therapeutic effect on ulcerative colitis by the regulation of inflammation and the intestinal flora, Food Funct. 13 (2022) 10710-10723. https://doi.org/10.1039/d2fo01619b.

[148]

A. Mansour, M.R. Mohajeri-Tehrani, M. Samadi, et al., Effects of supplementation with main coffee components including caffeine and/or chlorogenic acid on hepatic, metabolic, and inflammatory indices in patients with non-alcoholic fatty liver disease and type 2 diabetes: a randomized, double-blind, placebo-controlled, clinical trial, Nutr. J. 20 (2021) 35. https://doi.org/10.1186/s12937-021-00694-5.

[149]

T. Xu, Y. Ge, H. Du, et al., Berberis kansuensis extract alleviates type 2 diabetes in rats by regulating gut microbiota composition, J. Ethnopharmacol. 273 (2021) 113995. https://doi.org/10.1016/j.jep.2021.113995.

[150]

S.P. Costello, P.A. Hughes, O. Waters, et al., Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial, JAMA 321 (2019) 156-164. https://doi.org/10.1001/jama.2018.20046.

[151]

B. Zhou, Y. Yuan, S. Zhang, et al., Intestinal flora and disease mutually shape the regional immune system in the intestinal tract, Front. Immunol. 11 (2020) 575. https://doi.org/10.3389/fimmu.2020.00575.

[152]

C. Amoroso, F. Perillo, F. Strati, et al., The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation, Cells 9(5) (2020) 1234. https://doi.org/10.3390/cells9051234.

[153]

S.K. Forslund, R. Chakaroun, M. Zimmermann-Kogadeeva, et al., Combinatorial, additive and dose-dependent drug-microbiome associations, Nature 600 (2021) 500-505. https://doi.org/10.1038/s41586-021-04177-9.

Food Science and Human Wellness
Article number: 9250153
Cite this article:
Fu K, Dai S, Zhang Y, et al. Natural product chlorogenic acid achieves pharmacological activity and health protection via regulating gut microbiota: a review. Food Science and Human Wellness, 2025, 14(7): 9250153. https://doi.org/10.26599/FSHW.2024.9250153
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return