PDF (6.5 MB)
Collect
Submit Manuscript
Article | Open Access

Antioxidant peptides from Lateolabrax japonicus to protect against oxidative stress injury in Drosophila melanogaster via biochemical and gut microbiota interaction assays

Chen LiaLichan LiaJing ChengaXu ChenaMohamed A. FaragbXixi Caia()Shaoyun Wanga()
College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• LPH exhibited excellent antioxidant stability in vitro and alleviated physiological indicators related to oxidative stress in vivo.

• LPH mitigated cell death and intestinal barrier dysfunction induced by oxidative stress.

• LPH improved gut microbiota structure in Drosophila induced by H2O2.

• The antioxidant mechanism of LPH is mediated via Nrf2 and mTOR pathways.

• The LPH showed potential as a functional food in antioxidant supplements.

Graphical Abstract

View original image Download original image

Abstract

Identification of natural substances with antioxidant properties is ongoing research for addressing issues related to oxidative stress especially attributed to environmental effects. Our previous study demonstrated that Lateolabrax japonicus peptides (LPH), rich in Glu, Gly, and hydrophobic amino acids, exhibited remarkable antioxidant activity in vitro, with though its action mechanism yet to be revealed. Therefore, to assess the in vivo antioxidative properties of LPH, we employed H2O2 to generate oxidative stress in Drosophila melanogaster model. Results indicated that LPH significantly prolonged the lifespan of Drosophila subjected to oxidative stress mostly mediated via LPH’s enhancement of the antioxidant defense system and intestinal functions. Antioxidant effects were manifested by a decrease in malondialdehyde (MDA) levels, elevated superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, decreased levels of reactive oxygen species (ROS) in intestinal epithelial cells, and the preservation of intestinal length. LPH effectively controlled the excessive proliferation and differentiation of oxidative stress-induced Drosophila intestinal stem cells. At the gene level, LPH upregulated the expression of antioxidant-related Nrf2 genes while concurrently downregulated mTOR expression level. Furthermore, high-throughput 16S rDNA sequencing revealed that the addition of LPH significantly influenced the diversity and abundance of the intestinal microbiota in H2O2-induced Drosophila. These findings provide a deeper understanding of the antioxidative mechanism of LPH, suggesting its potential applications in food industry and to be assessed using other in vivo oxidative stress models.

Electronic Supplementary Material

Download File(s)
fshw-14-7-9250154_ESM.docx (188.2 KB)

References

[1]

T. Shen, Y. Miao, C. Ding, et al., Activation of the p38/MAPK pathway regulates autophagy in response to the CYPOR-dependent oxidative stress induced by zearalenone in porcine intestinal epithelial cells, Food Chem. Toxicol. 131 (2019) 110527. https://doi.org/10.1016/j.fct.2019.05.035.

[2]
F.U. Vaidya, A.S. Chhipa, N. Sagar, et al., Oxidative stress and inflammation can fuel cancer: In: P. Maurya, K. Dua (Eds.), Role of Oxidative Stress in Pathophysiology of Diseases, Springer, Singapore, 2020, pp. 229-258. https://doi.org/10.1007/978-981-15-1568-2_14.
[3]

J.E. Klaunig, Oxidative stress and cancer, Curr. Pharm. Design 24 (2018) 4771-4778. https://doi.org/10.2174/1381612825666190215121712.

[4]

L. Mahajan, P.K. Verma, R. Raina, et al., Alteration in thiols homeostasis, protein and lipid peroxidation in renal tissue following subacute oral exposure of imidacloprid and arsenic in Wistar rats, Toxicol. Rep. 5 (2018) 1114-1119. https://doi.org/10.1016/j.toxrep.2018.11.003.

[5]

G.O. Oke, A.A. Abiodun, C.E. Imafidon, et al., Zingiber officinale (Roscoe) mitigates CCl4-induced liver histopathology and biochemical derangements through antioxidant, membrane-stabilizing and tissue-regenerating potentials, Toxicol. Rep. 6 (2019) 416-425. https://doi.org/10.1016/j.toxrep.2019.05.001.

[6]

J. von Frieling, M.N. Faisal, F. Sporn, et al., A high-fat diet induces a microbiota-dependent increase in stem cell activity in the Drosophila intestine, PLoS Genet. 16 (2020) e1008789. https://doi.org/10.1371/journal.pgen.1008789.

[7]

A. Bhattacharyya, R. Chattopadhyay, S. Mitra, et al., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases, Physiol. Rev. 94 (2014) 329-354. https://doi.org/10.1152/physrev.00040.2012.

[8]

T. Finkel, N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature 408 (2000) 239-247. https://doi.org/10.1038/35041687.

[9]

C. Suo, Z. Fan, L. Zhou, et al., Perfluorooctane sulfonate affects intestinal immunity against bacterial infection, Sci. Rep. 7 (2017) 5166. https://doi.org/10.1038/s41598-017-04091-z.

[10]

M. Rera, R.I. Clark, D.W. Walker, Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 21528-21533. https://doi.org/10.1073/pnas.1215849110.

[11]

Y. Cao, L. Zou, W. Li, et al., Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota, Int. J. Biol. Macromol. 163 (2020) 55-65. https://doi.org/10.1016/j.ijbiomac.2020.06.241.

[12]

A. Dan, Y. Chen, Y. Tian, et al., In vivo anti-aging properties on fat diet-induced high fat Drosophila melanogaster of n-butanol extract from Paecilomyces hepiali, Food Sci. Hum. Wellness 12 (2023) 1204-1211. https://doi.org/10.1016/j.fshw.2022.10.015.

[13]

K. Yang, Q. Li, G. Zhang, et al., The protective effects of carrageenan oligosaccharides on intestinal oxidative stress damage of female Drosophila melanogaster, Antioxidants 10 (2021) 1996. https://doi.org/10.3390/antiox10121996.

[14]

L.H. Mojica-Vázquez, D. Madrigal-Zarraga, R. García-Martínez, et al., Mercury chloride exposure induces DNA damage, reduces fertility, and alters somatic and germline cells in Drosophila melanogaster ovaries, Environ. Sci. Pollut. Res. 26 (2019) 32322-32332. https://doi.org/10.1007/s11356-019-06449-4.

[15]

Z. Chen, W. Zhang, F. Wang, et al., Sestrin protects Drosophila midgut from mercury chloride-induced damage by inhibiting oxidative stress and stimulating intestinal regeneration, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 248 (2021) 109083. https://doi.org/10.1016/j.cbpc.2021.109083.

[16]

Y. Zhu, F. Lao, X. Pan, et al., Food protein-derived antioxidant peptides: molecular mechanism, stability and bioavailability, Biomolecules 12 (2022) 1622. https://doi.org/10.3390/biom12111622.

[17]

C. Li, X. Chen, L. Li, et al., Protective effect of antioxidant peptides from bass (Lateolabrax japonicus) on oxidative stress injury in Caco-2 cells, Food Front. 4 (2023) 818-830. https://doi.org/10.1002/fft2.224.

[18]

Y. Hu, K. Li, Y. Bai, et al., Effect of combined ultrasonic and enzymatic assisted treatment on the fermentation process of whole Lycium barbarum (goji berry) fruit, Food Biosci. 53 (2023) 102550. https://doi.org/10.1016/j.fbio.2023.102550.

[19]

T. Osawa, M. Namiki, A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves, Agri. Biol. Chem. 45 (1981) 735-739. https://doi.org/10.1080/00021369.1981.10864583.

[20]

X.X. Xin, Y. Chen, D. Chen, et al., Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila, J. Agr. Food Chem. 64 (2016) 5803-5812. https://doi.org/10.1021/acs.jafc.6b00514.

[21]

H. Alkadi, A Review on free radicals and antioxidants, Infect. Disord. Drug Targets 20 (2020) 16-26. https://doi.org/10.2174/1871526518666180628124323.

[22]

S.Y. Zhang, G.X. Zhao, S.K. Suo, et al., Purification, identification, activity evaluation, and stability of antioxidant peptides from alcalase hydrolysate of Antarctic krill (Euphausia superba) proteins, Mar. Drugs 19 (2021) 347. https://doi.org/10.3390/md19060347.

[23]

Y. He, X. Pan, C.F. Chi, et al., Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: preparation, identification, and antioxidant activity evaluation, LWT-Food Sci. Technol. 105 (2019) 1-8. https://doi.org/10.1016/j.lwt.2019.01.054.

[24]

S. Loveday, X. Wang, M. Rao, et al., Effect of pH, NaCl, CaCl2 and temperature on self-assembly of β-lactoglobulin into nanofibrils: a central composite design study, J. Agr. Food Chem. 59 (2011) 8467-8474. https://doi.org/10.1021/jf201870z.

[25]

S. Soorkia, C. Jouvet, G. Grégoire, UV photoinduced dynamics of conformer-resolved aromatic peptides, Chem. Rev. 120 (2019) 3296-3327. https://doi.org/10.1021/acs.chemrev.9b00316.

[26]

L. Wang, Y.M. Li, L. Lei, et al., Cranberry anthocyanin extract prolongs lifespan of fruit flies, Exp. Gerontol. 69 (2015) 189-195. https://doi.org/10.1016/j.exger.2015.06.021.

[27]

A.M. Pisoschi, A. Pop, F. Iordache, et al., Oxidative stress mitigation by antioxidants: an overview on their chemistry and influences on health status, Eur. J. Med. Chem. 209 (2021) 112891. https://doi.org/10.1016/j.ejmech.2020.112891.

[28]

Z. Xu, Q. Hu, M. Xie, et al., Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells, Food Sci. Hum. Wellness 12 (2023) 1893-1904. https://doi.org/10.1016/j.fshw.2023.02.041.

[29]

I.S. Pais, R.S. Valente, M. Sporniak, et al., Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria, PLoS Biol. 16 (2018) e2005710. https://doi.org/10.1371/journal.pbio.2005710.

[30]

A.A. Adwas, A. Elsayed, A. Azab, et al., Oxidative stress and antioxidant mechanisms in human body, J. Appl. Biotechnol. Bioeng 6 (2019) 43-47. https://doi.org/10.15406/jabb.2019.06.00173.

[31]

C. Mas-Bargues, C. Escriva, M. Dromant, et al., Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease, Arch. Biochem. Biophys. 709 (2021) 108941. https://doi.org/10.1016/j.abb.2021.108941.

[32]

O. Morris, H. Jasper, Reactive oxygen species in intestinal stem cell metabolism, fate and function, Free Radic. Biol. Med. 166 (2021) 140-146. https://doi.org/10.1016/j.freeradbiomed.2021.02.015.

[33]

E.R. Hughes, M.G. Winter, B.A. Duerkop, et al., Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis, Cell Host Microbe 21 (2017) 208-219. https://doi.org/10.1016/j.chom.2017.01.005.

[34]

T. Xia, B. Zhang, S. Li, et al., Vinegar extract ameliorates alcohol-induced liver damage associated with the modulation of gut microbiota in mice, Food Funct. 11 (2020) 2898-2909. https://doi:0.1039/c9fo03015h.

[35]

G. Dingeo, A. Brito, H. Samouda, et al., Phytochemicals as modifiers of gut microbial communities, Food Funct. 11 (2020) 8444-8471. https://doi.org/10.1039/D0FO01483D.

[36]

Z. Zhang, J. Lv, L. Pan, et al., Roles and applications of probiotic Lactobacillus strains, Appl. Microbiol. Biot. 102 (2018) 8135-8143. https://doi.org/10.1007/s00253-018-9217-9.

[37]

Y. Lee, N. Kim, P. Werlinger, et al., Probiotic characterization of Lactobacillus brevis MJM60390 and in vivo assessment of its antihyperuricemic activity, J. Med. Food 25 (2022) 367-380. https://doi.org/10.1089/jmf.2021.K.0171.

[38]

G. Zhang, Y. Gu, X. Dai, Protective effect of bilberry anthocyanin extracts on dextran sulfate sodium-induced intestinal damage in Drosophila melanogaster, Nutrients 14 (2022) 2875. https://doi.org/10.3390/nu14142875.

[39]

R.K. Simhadri, E.M. Fast, R. Guo, et al., The gut commensal microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia, mSphere 2 (2017) 00287-17. https://doi.org/10.1128/msphere.00287-17.

[40]

T. de Sousa, M. Hébraud, M.L.E. Dapkevicius, et al., Genomic and metabolic characteristics of the pathogenicity in Pseudomonas aeruginosa, Int. J. Mol. Sci. 22 (2021) 12892. https://doi.org/10.3390/ijms222312892.

[41]

F. de Filippis, E. Pasolli, D. Ercolini, The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health, FEMS Microbiol. Rev. 44 (2020) 454-489. https://doi.org/10.1093/femsre/fuaa015.

[42]

Y. Kong, B. Jiang, X. Luo, Gut microbiota influences Alzheimer’s disease pathogenesis by regulating acetate in Drosophila model, Future Microbiol. 13 (2018) 1117-1128. https://doi.org/10.2217/fmb-2018-0185.

[43]

I. Choi, H. Son, J.H. Baek, Tricarboxylic acid (TCA) cycle intermediates: regulators of immune responses, Life 11 (2021) 69. https://doi.org/10.3390/life11010069.

[44]

H. Lade, J.S. Kim, Bacterial targets of antibiotics in methicillin-resistant Staphylococcus aureus, Antibiotics 10 (2021) 398. https://doi.org/10.3390/antibiotics10040398.

[45]

C.J. Lee, T.A. Qiu, J.V. Sweedler, D-Alanine: distribution, origin, physiological relevance, and implications in disease, BBA-Proteins Proteom. 1868 (2020) 140482. https://doi.org/10.1016/j.bbapap.2020.140482.

[46]

K.S. McCommis, B.N. Finck, The hepatic mitochondrial pyruvate carrier as a regulator of systemic metabolism and a therapeutic target for treating metabolic disease, Biomolecules 13 (2023) 261. https://doi.org/10.3390/biom13020261.

[47]

I. Ahmad, I. Ahmed, S. Fatma, et al., Role of branched-chain amino acids on growth, physiology and metabolism of different fish species: a review, Aquacult. Nutr. 27 (2021) 1270-1289. https://doi.org/10.1111/anu.13267.

[48]

G.P. Sykiotis, Keap1/Nrf2 signaling pathway, Antioxidants 10 (2021) 828. https://doi.org/10.3390/antiox10060828.

[49]

T. Cui, Y. Lai, J.S. Janicki, et al., Nuclear factor erythroid-2 related factor 2 (Nrf2)-mediated protein quality control in cardiomyocytes, Front. Biosci. 21 (2016) 192-202. https://doi.org/10.2741/4384.

[50]

Q.M. Chen, A.J. Maltagliati, Nrf2 at the heart of oxidative stress and cardiac protection, Physiol. Genomics 50 (2017) 77-97. https://doi.org/10.1152/physiolgenomics.00041.2017.

[51]

F. Kumar Deshmukh, D. Yaffe, M.A. Olshina, et al., The contribution of the 20S proteasome to proteostasis, Biomolecules 9 (2019) 190. https://doi.org/10.3390/biom9050190.

[52]

M.D. Rand, D. Vorojeikina, A. Peppriell, et al., Drosophotoxicology: Elucidating kinetic and dynamic pathways of methylmercury toxicity in a Drosophila model, Front. Genet. 10 (2019) 666. https://doi.org/10.3389/fgene.2019.00666.

[53]

Y. Su, T. Wang, N. Wu, et al., α-Ketoglutarate extends Drosophila lifespan by inhibiting mTOR and activating AMPK, Aging 11 (2019) 4183-4197. https://doi.org/10.18632/aging.102045.

[54]

J. Qian, S. Su, P. Liu, Experimental approaches in delineating mTOR signaling, Genes 11 (2020) 738. https://doi.org/10.3390/genes11070738.

[55]

Y. Han, Y. Guo, S.W. Cui, et al., Purple sweet potato extract extends lifespan by activating autophagy pathway in male Drosophila melanogaster, Exp. Gerontol. 144 (2021) 111190. https://doi.org/10.1016/j.exger.2020.111190.

[56]

X. Cai, S. Chen, J. Liang, et al., Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism, Food Chem. Toxicol. 148 (2021) 111965. https://doi.org/10.1016/j.fct.2020.111965.

[57]
National Research Council, Commission on Life Sciences, Board on Environmental Studies and Toxicology, et al., Using model animals to assess and understand developmental toxicity, in: Committee on Developmental Toxicology, Board on Environmental Studies and Toxicology, National Research Council. Scientific Frontiers in Developmental Toxicology and Risk Assessment, National Academy Press, Washington, 2000, pp. 151-195. https://doi.org/10.17226/9871.
[58]

R. Tanner, H. McShane, Replacing, reducing and refining the use of animals in tuberculosis vaccine research, Altex-Altern. Anim. Ex. 34 (2017) 157-166. https://doi.org/10.14573/altex.1607281.

[59]

R. Zhang, J. Chen, X. Jiang, et al., Antioxidant and hypoglycaemic effects of tilapia skin collagen peptide in mice, Int. J. Food Sci. Technol. 51 (2016) 2157-2163. https://doi.org/10.1111/ijfs.13193.

[60]

L. Zhang, Y. Zheng, X. Cheng, et al., The anti-photoaging effect of antioxidant collagen peptides from silver carp (Hypophthalmichthys molitrix) skin is preferable to tea polyphenols and casein peptides, Food Funct. 8 (2017) 1698-1707. https://doi.org/10.1039/c6fo01499b.

Food Science and Human Wellness
Article number: 9250154
Cite this article:
Li C, Li L, Cheng J, et al. Antioxidant peptides from Lateolabrax japonicus to protect against oxidative stress injury in Drosophila melanogaster via biochemical and gut microbiota interaction assays. Food Science and Human Wellness, 2025, 14(7): 9250154. https://doi.org/10.26599/FSHW.2024.9250154
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return