Foods and animal feeds frequently become contaminated with the nephrotoxic ochratoxin A (OTA). Our prior research has indicated that ursolic acid (UA), which is widely present in fruits and medicinal plants, has the potential to alleviate nephrotoxicity triggered by OTA. Additionally, excessive induction of endoplasmic reticulum (ER)-phagy exacerbates OTA-induced apoptosis. Therefore, further investigation is essential to comprehend whether UA can mitigate OTA-induced apoptosis by influencing ER-phagy. This objective is accomplished through a series of experiments involving assessments of cell viability, apoptosis, fluorescence microscopy, and western blot analysis. The outcomes of these experiments reveal that pre-treatment with 4 μmol/L UA for 2 h can markedly reverse the elevated apoptotic rate, the co-localization of ER and lysosomes, and the protein expressions of GRP78, p-eIF2α, Chop, Bax, and Bak, as well as the reduced cell viability and the protein expressions of Lonp1, Trap1, p62, Tex264, FAM134B, Bcl-2, and Bcl-xl, all caused by exposure to 1 μmol/L OTA for 24 h in human proximal tubule epithelial-originated kidney-2 (HK-2) cells (P < 0.05). Interestingly, the increased expression of LC3B-II induced by OTA is further amplified by UA pre-treatment (P < 0.05). In conclusion, OTA triggers a harmful feedback loop between ER stress (ERS) and excessive ER-phagy, thereby further promoting ERS- and mitochondrial-mediated apoptosis in vitro. However, this effect is significantly mitigated by UA through the inhibition of autophagosome-lysosome fusion, consequently blocking the excessive ER-phagic flux.
X.L. Shen, Y. Zhang, W. Xu, et al., An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells, J. Proteomics. 78 (2013) 398-415. https://doi.org/10.1016/j.jprot.2012.10.010.
J. Zheng, Y. Zhang, W. Xu, et al., Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A, Toxicol. Appl. Pharmacol. 268 (2013) 123-131. https://doi.org/10.1016/j.taap.2013.01.021.
Y. Wang, X. Peng, Z. Yang, et al., iTRAQ mitoproteome analysis reveals mechanisms of programmed cell death in arabidopsis thaliana induced by ochratoxin A, Toxins. 9 (2017) 167. https://doi.org/10.3390/toxins9050167.
K.L. Gützkow, C. Al Ayoubi, L. Soler Vasco, et al., Analysis of ochratoxin A, aflatoxin B1 and its biosynthetic precursors in cheese – method development and market sample screening, Food Control 143 (2023) 109241. https://doi.org/10.1016/j.foodcont.2022.109241.
C. Li, W. Chen, L. Zheng, et al., Ameliorative effect of ursolic acid on ochratoxin A-induced renal cytotoxicity mediated by Lonp1/Aco2/Hsp75, Toxicon 168 (2019) 141-146. https://doi.org/10.1016/j.toxicon.2019.07.014.
Y. Wang, Y. Zheng, A. Zhou, et al., Transcriptomic analysis reveals the inhibition mechanism of pulsed light on fungal growth and ochratoxin A biosynthesis in Aspergillus carbonarius, Food Res. Int. 165 (2023) 112501. https://doi.org/10.1016/j.foodres.2023.112501.
X.L. Shen, B. Zhang, R. Liang, et al., Central role of Nix in the autophagic response to ochratoxin A, Food Chem. Toxicol. 69 (2014) 202-209. https://doi.org/10.1016/j.fct.2014.04.017.
P. Palma, R. Calderón, M. Godoy, et al., Human exposure to ochratoxin A and its natural occurrence in spices marketed in Chile (2016–2020): a case study of merkén, J. Food Compos. Anal. 115 (2023) 104885. https://doi.org/10.1016/j.jfca.2022.104885.
T. Zhao, X.L. Shen, W. Chen, et al., Advances in research of nephrotoxicity and toxic antagonism of ochratoxin A, Toxin Rev. 36 (2017) 39-44. https://doi.org/10.1080/15569543.2016.1243560.
A. Cherkani-Hassani, I. Ghanname, A. Zinedine, et al., Ochratoxin a in breast milk in Morocco: the affecting dietary habits of the lactating mothers and the degree of exposure of newborns “CONTAMILK study”, Drug Chem. Toxicol. 45 (2022) 1081-1087. https://doi.org/10.1080/01480545.2020.1808669.
Q. Zhang, W. Chen, B. Zhang, et al., Lonp1 and Sig-1R contribute to the counteraction of ursolic acid against ochratoxin A-induced mitochondrial apoptosis, Food Chem. Toxicol. 172 (2023) 113592. https://doi.org/10.1016/j.fct.2022.113592.
W. Chen, C. Li, B. Zhang, et al., Advances in biodetoxification of ochratoxin A - a review of the past five decades, Front. Microbiol. 9 (2018) 1386. https://doi.org/10.3389/fmicb.2018.01386.
B. Zhang, X.L. Shen, R. Liang, et al., Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells, J. Proteomics 101 (2014) 154-168. https://doi.org/10.1016/j.jprot.2014.02.017.
R. Liang, X.L. Shen, B. Zhang, et al., Apoptosis signal-regulating kinase 1 promotes ochratoxin A-induced renal cytotoxicity, Sci. Rep. 5 (2015) 8078. https://doi.org/10.1038/srep08078.
S.A. Yang, K.H. Rhee, H.J. Yoo, et al., Ochratoxin A induces endoplasmic reticulum stress and fibrosis in the kidney via the HIF-1α/miR-155-5p link, Toxicol. Rep. 10 (2023) 133-145. https://doi.org/10.1016/j.toxrep.2023.01.006.
Y. Song, W. Liu, Y. Zhao, et al., Ochratoxin A induces human kidney tubular epithelial cell apoptosis through regulating lipid raft/PTEN/AKT signaling pathway, Environ. Toxicol. 36 (2021) 1880-1885. https://doi.org/10.1002/tox.23308.
B. Zhang, L. Zhu, Y. Dai, et al., An in vitro attempt at precision toxicology reveals the involvement of DNA methylation alteration in ochratoxin A-induced G0/G1 phase arrest, Epigenetics 15 (2020) 199-214. https://doi.org/10.1080/15592294.2019.1644878.
M.C. Schulz, M. Gekle, G. Schwerdt, Epithelial-fibroblast cross talk aggravates the impact of the nephrotoxin ochratoxin A, BBA-Mol. Cell Res. 1866 (2019) 118528. https://doi.org/10.1016/j.bbamcr.2019.118528.
C.S. Khoi, Y.W. Lin, J.H. Chen, et al., Selective activation of endoplasmic reticulum stress by reactive-oxygen-species-mediated ochratoxin a-induced apoptosis in tubular epithelial cells, Int. J. Mol. Sci. 22 (2021) 10951. https://doi.org/10.3390/ijms222010951.
Q. Zhang, W. Chen, B. Zhang, et al., Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A, Toxicology 450 (2021) 152681. https://doi.org/10.1016/j.tox.2021.152681.
J.G. Henn, L. Steffens, N.D. de Moura Sperotto, et al., Toxicological evaluation of a standardized hydroethanolic extract from leaves of Plantago australis and its major compound, verbascoside, J. Ethnopharmacol. 229 (2019) 145-156. https://doi.org/10.1016/j.jep.2018.10.003.
P. Kaur, R.C. Gupta, A. Dey, et al., Simultaneous quantification of oleanolic acid, ursolic acid, betulinic acid and lupeol in different populations of five Swertia species by using HPTLC-densitometry: comparison of different extraction methods and solvent selection, Ind. Crop. Prod. 130 (2019) 537-546. https://doi.org/10.1016/j.indcrop.2018.12.089.
L. López-Hortas, P. Pérez-Larrán, M.J. González-Muñoz, et al., Recent developments on the extraction and application of ursolic acid. A review, Food Res. Int. 103 (2018) 130-149. https://doi.org/10.1016/j.foodres.2017.10.028.
X. Wu, H. Li, Z. Wan, et al., The combination of ursolic acid and empagliflozin relieves diabetic nephropathy by reducing inflammation, oxidative stress and renal fibrosis, Biomed. Pharmacother. 144 (2021) 112267. https://doi.org/10.1016/j.biopha.2021.112267.
J. Zhao, H. Zheng, Z. Sui, et al., Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy, Cytokine 123 (2019) 154726. https://doi.org/10.1016/j.cyto.2019.05.013.
S. Zhu, Z. Qiu, X. Qiao, et al., Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced anti-inflammatory effects: fabrication, structural characterization and property evaluation, Food Sci. Hum. Wellness 12 (2023) 454-466. https://doi.org/10.1016/j.fshw.2022.07.047.
M. Komatsu, Y. Ichimura, Selective autophagy regulates various cellular functions, Genes to Cells 15 (2010) 923-933. https://doi.org/10.1111/j.1365-2443.2010.01433.x.
J. Doherty, E.H. Baehrecke, Life, death and autophagy, Nat. Cell Biol. 20 (2018) 1110-1117. https://doi.org/10.1038/s41556-018-0201-5.
Y. Liang, Q. Zhong, R. Ma, et al., Apigenin, a natural flavonoid, promotes autophagy and ferroptosis in human endometrial carcinoma Ishikawa cells in vitro and in vivo, Food Sci. Hum. Wellness 12 (2023) 2242-2251. https://doi.org/10.1016/j.fshw.2023.03.044.
A. Abdrakhmanov, V. Gogvadze, B. Zhivotovsky, To eat or to die: deciphering selective forms of autophagy, Trends Biochem. Sci. 45 (2020) 347-364. https://doi.org/10.1016/j.tibs.2019.11.006.
A. Gubas, I. Dikic, ER remodeling via ER-phagy, Mol. Cell. 82 (2022) 1492-1500. https://doi.org/10.1016/j.molcel.2022.02.018.
H. Deng, W. Chen, B. Zhang, et al., Excessive ER-phagy contributes to ochratoxin A-induced apoptosis, Food Chem. Toxicol. 176 (2023) 113793. https://doi.org/10.1016/j.fct.2023.113793.
S. Bernales, K.L. McDonald, P. Walter, Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response, PLoS Biol. 4 (2006) e423. https://doi.org/10.1371/journal.pbio.0040423.
M. Stephani, L. Picchianti, Y. Dagdas, C53 is a cross-kingdom conserved reticulophagy receptor that bridges the gap betweenselective autophagy and ribosome stalling at the endoplasmic reticulum, Autophagy 17 (2021) 586-587. https://doi.org/10.1080/15548627.2020.1846304.
Q. Wang, W. Chen, B. Zhang, et al., Perfluorooctanoic acid induces hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro via endoplasmic reticulum-mitochondria communication, Chem. Biol. Interact. 354 (2022) 109844. https://doi.org/10.1016/j.cbi.2022.109844.
S. Ferro-Novick, F. Reggiori, J.L. Brodsky, ER-phagy, ER homeostasis, and ER quality control: implications for disease, Trends Biochem. Sci. 46 (2021) 630-639. https://doi.org/10.1016/j.tibs.2020.12.013.
J. Liu, Y. Wang, L. Song, et al., A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability, Nat. Commun. 8 (2017) 14186. https://doi.org/10.1038/ncomms14186.
J.R. Liang, E. Lingeman, T. Luong, et al., A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation, Cell 180 (2020) 1160-1177.e1120. https://doi.org/10.1016/j.cell.2020.02.017.
J. Yang, W. Chen, B. Zhang, et al., Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis, Arch. Toxicol. 92 (2018) 1913-1923. https://doi.org/10.1007/s00204-018-2210-3.
S. Zhang, J. Tang, C. Sun, et al., Dexmedetomidine attenuates hepatic ischemia-reperfusion injury-induced apoptosis via reducing oxidative stress and endoplasmic reticulum stress, Int. Immunopharmacol. 117 (2023) 109959. https://doi.org/10.1016/j.intimp.2023.109959.
Y. Han, X.Y. Shen, Z.K. Gao, et al., Pre-ischaemic treatment with enriched environment alleviates acute neuronal injury by inhibiting endoplasmic reticulum stress-dependent autophagy and apoptosis, Neuroscience 513 (2023) 14-27. https://doi.org/10.1016/j.neuroscience.2022.12.014.
J. Yang, H. Xu, W. Wu, et al., Ferroptosis signaling promotes the release of misfolded proteins via exosomes to rescue ER stress in hepatocellular carcinoma, Free Radic. Biol. Med. 202 (2023) 110-120. https://doi.org/10.1016/j.freeradbiomed.2023.03.027.
Y. Liang, S. Chen, S. Han, et al., Toosendanin induced hepatotoxicity via triggering PERK-eIF2α-ATF4 mediated ferroptosis, Toxicol. Lett. 377 (2023) 51-61. https://doi.org/10.1016/j.toxlet.2023.02.006.
X. Zhong, Y. Wang, D. Liu, et al., HC067047 ameliorates sepsis-associated encephalopathy by suppressing endoplasmic reticulum stress and oxidative stress-induced pyroptosis in the hippocampi of mice, Neuroscience 517 (2023) 117-127. https://doi.org/10.1016/j.neuroscience.2023.02.005.
X. Yang, S. Dong, C. Li, et al., Hydroquinone triggers pyroptosis and endoplasmic reticulum stress via AhR-regulated oxidative stress in human lymphocytes, Toxicol. Lett. 376 (2023) 39-50. https://doi.org/10.1016/j.toxlet.2023.01.005.
P. Chen, Y. Song, L. Tang, et al., Tributyltin chloride (TBTCL) induces cell injury via dysregulation of endoplasmic reticulum stress and autophagy in Leydig cells, J. Hazard. Mater. 448 (2023) 130785. https://doi.org/10.1016/j.jhazmat.2023.130785.
W. Xie, Y. Xue, X. Song, et al., Forkhead box protein A2 alleviates toll-like receptor 4-mediated inflammation, endoplasmic reticulum stress, autophagy, and apoptosis induced by lipopolysaccharide in bovine hepatocytes, J. Dairy Sci. 106 (2023) 2089-2112. https://doi.org/10.3168/jds.2022-22252.
C.L. Lin, C.I. Yu, T.H. Lee, et al., Plumbagin induces the apoptosis of drug-resistant oral cancer in vitro and in vivo through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction, Phytomedicine 111 (2023) 154655. https://doi.org/10.1016/j.phymed.2023.154655.
Y. Ma, Y. Wang, Z. Wang, et al., New perspective for calpain-mediated regulation of meat quality: unveiling the impact on mitochondrial pathway apoptosis in post-mortem, Food Chem. 441 (2024) 138287. https://doi.org/10.1016/j.foodchem.2023.138287.
M.C. Maiuri, E. Zalckvar, A. Kimchi, et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis, Nat. Rev. Mol. Cell Bio. 8 (2007) 741-752. https://doi.org/10.1038/nrm2239.
G. Mariño, M. Niso-Santano, E.H. Baehrecke, et al., Self-consumption: the interplay of autophagy and apoptosis, Nat. Rev. Mol. Cell Bio. 15 (2014) 81-94. https://doi.org/10.1038/nrm3735.
D.J. Klionsky, A.K. Abdel-Aziz, S. Abdelfatah, et al., Guidelines for the use and interpretation of assays for monitoring autophagy (4th ed.), Autophagy 17 (2021) 1-382. https://doi.org/10.1080/15548627.2020.1797280.
S. Pan, S. Guo, J. Dai, et al., Trehalose ameliorates autophagy dysregulation in aged cortex and acts as an exercise mimetic to delay brain aging in elderly mice, Food Sci. Hum. Wellness 11 (2022) 1036-1044. https://doi.org/10.1016/j.fshw.2022.03.028.
C.H. Ji, H.Y. Kim, A.J. Heo, et al., The N-Degron pathway mediates ER-phagy, Mol. Cell 75 (2019) 1058-1072.e1059. https://doi.org/10.1016/j.molcel.2019.06.028.
H. Zheng, Q. Liu, S. Wang, et al., Epimedokoreanin B inhibits the growth of lung cancer cells through endoplasmic reticulum stress-mediated paraptosis accompanied by autophagosome accumulation, Chem. Biol. Interact. 366 (2022) 110125. https://doi.org/10.1016/j.cbi.2022.110125.
X. Liu, M. Ling, C. Chen, et al., Impaired autophagic flux and p62-mediated EMT are involved in arsenite-induced transformation of L-02 cells, Toxicol. Appl. Pharmacol. 334 (2017) 75-87. https://doi.org/10.1016/j.taap.2017.09.004.
H. Chino, T. Hatta, T. Natsume, et al., Intrinsically disordered protein TEX264 mediates ER-phagy, Mol. Cell 74 (2019) 909-921.e906. https://doi.org/10.1016/j.molcel.2019.03.033.
H. An, A. Ordureau, J.A. Paulo, et al., TEX264 Is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress, Mol. Cell 74 (2019) 891-908.e810. https://doi.org/10.1016/j.molcel.2019.03.034.
W.K. Tang, C.H. Chui, S. Fatima, et al., Oncogenic properties of a novel gene JK-1 located in chromosome 5p and its overexpression in human esophageal squamous cell carcinoma, Int. J. Mol. Med. 19 (2007) 915-923. https://doi.org/10.3892/ijmm.19.6.915.
E. Delorme-Axford, H. Popelka, D.J. Klionsky, TEX264 is a major receptor for mammalian reticulophagy, Autophagy 15 (2019) 1677-1681. https://doi.org/10.1080/15548627.2019.1646540.
Y. Lim, S. Kim, E.K. Kim, Palmitate reduces starvation-induced ER stress by inhibiting ER-phagy in hypothalamic cells, Mol. Brain 14 (2021) 65. https://doi.org/10.1186/s13041-021-00777-8.
Y. Zhan, Q. Chen, Y. Song, et al., Berbamine Hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells, Cell Biol. Toxicol. 39 (2023) 1297-1317. https://doi.org/10.1007/s10565-022-09756-8.