PDF (10.6 MB)
Collect
Submit Manuscript
Article | Open Access

Dietary oxidized cholesterol causes mucus barrier thinner via decreasing Muc2 expression in the proximal colon and increasing the abundance of mucus-degrading bacteria

Chi YanShouhe HuangZixing ChenHuafang Ding()Zhenyu Chen()
School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Intake of oxidized cholesterol (OXC) induced the thinness of colonic mucus layer.

• OXC promoted mucus layer erosion and bacteria infiltration in DSS-induced colitis mice.

• OXC down-regulated the expression of proximal Muc2 and increased the mucus-degrading bacteria.

• Antibiotics-treated experiments proved OXC-induced mucus layer thinness was mediated by gut microbiota dysbiosis.

Graphical Abstract

View original image Download original image

Abstract

Oxidized cholesterol (OXC) is a harmful dietary substance. Although the consumption of OXC has been associated with colonic inflammation, related underlying mechanisms are still limited. We evaluated the influence of dietary OXC on gut health and ecology by applying the murine model. Results showed that the thickness of the mucus layer was significantly reduced in healthy mice treated with OXC. Short-term intake of OXC did not influence the expression of pro-inflammatory factors in healthy mice but it induced the decrease of Muc2 expression in the proximal colon, accompanied by an increase in the abundance of 2 mucus-degrading bacteria, namely Akkermansia muciniphila and Bacteroides acidifaciens. Consistently, oral exposure of OXC promoted mucus barrier erosion in dextran sulfate sodium (DSS)-induced colitis mice and facilitated bacteria infiltration in the colon. The adverse effect of OXC on mucus layer disappeared in antibiotics-treated healthy mice, suggesting that the damaging effect of OXC on the gut mucus layer was not direct and instead was mediated by causing microbiota dysbiosis. Finally, the impact of OXC on the mucus layer and colitis was partly alleviated by green tea catechins. These studies demonstrated that the OXC-induced mucus barrier damage was mainly induced by the dysregulation of gut microbiota at least in this mouse model.

References

[1]

C.B. Appleyard, G. Hernández, C.F. Rios-Bedoya, Basic epidemiology of inflammatory bowel disease in Puerto Rico, Inflamm. Bowel Dis. 10 (2004) 106-111. https://doi.org/10.1097/00054725-200403000-00007.

[2]

K. Knight-Sepulveda, S. Kais, R. Santaolalla, et al., Diet and inflammatory bowel disease, Gastroenterol. Hepatol. (N Y) 11 (2015) 511-520.

[3]

G.G. Kaplan, The global burden of IBD: from 2015 to 2025, Nat. Rev. Gastroenterol. Hepatol. 12 (2015) 720-727. https://doi.org/10.1038/nrgastro.2015.150.

[4]

K.J. Maloy, F. Powrie, Intestinal homeostasis and its breakdown in inflammatory bowel disease, Nature 474 (2011) 298-306. https://doi.org/10.1038/nature10208.

[5]

J.R. Turner, Intestinal mucosal barrier function in health and disease, Nat. Rev. Immunol. 9 (2009) 799-809. https://doi.org/10.1038/nri2653.

[6]

L. Dong, J. Xie, Y. Wang, et al., Mannose ameliorates experimental colitis by protecting intestinal barrier integrity, Nat. Commun. 13 (2022) 4804. https://doi.org/10.1038/s41467-022-32505-8.

[7]

T. Kobayashi, B. Siegmund, C. Le Berre, et al., Ulcerative colitis, Nat. Rev. Dis. Primers 6 (2020) 74. https://doi.org/10.1038/s41572-020-0205-x.

[8]

Y. Liu, X. Yu, J. Zhao, et al., The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression, Int. J. Biol. Macromol. 164 (2020) 884-891. https://doi.org/10.1016/j.ijbiomac.2020.07.191.

[9]

A.C. Luissint, C.A. Parkos, A. Nusrat, Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair, Gastroenterology 151 (2016) 616-632. https://doi.org/10.1053/j.gastro.2016.07.008.

[10]

K. Bergstrom, X. Shan, D. Casero, et al., Proximal colon-derived O-glycosylated mucus encapsulates and modulates the microbiota, Science 370 (2020) 467-472. https://doi.org/10.1126/science.aay7367.

[11]

N. Burger-Van Paassen, A. Vincent, P.J. Puiman, et al., The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection, Biochem. J. 420 (2009) 211-219. https://doi.org/10.1042/bj20082222.

[12]

S. Pendyala, J.M. Walker, P.R. Holt, A high-fat diet is associated with endotoxemia that originates from the gut, Gastroenterology 142 (2012) 1100-1101.e2. https://doi.org/10.1053/j.gastro.2012.01.034.

[13]

A. Serra, G. Conte, A. Cappucci, et al., Cholesterol and fatty acids oxidation in meat from three muscles of massese suckling lambs slaughtered at different weights, Ital. J. Anim. Sci. 13 (2014) 3275. https://doi.org/10.4081/ijas.2014.3275.

[14]

B. Sander, D. Smith, P. Addis, Effects of processing stage and storage conditions on cholesterol oxidation products in butter and cheddar cheese, J. Dairy Sci. 71 (1988) 3173-3178. https://doi.org/10.3168/jds.S0022-0302(88)79921-X.

[15]

Y. Liu, X. Yang, F. Xiao, et al., Dietary cholesterol oxidation products: perspectives linking food processing and storage with health implications, Compr. Rev. Food Sci. Food Saf. 21 (2022) 738-779. https://doi.org/10.1111/1541-4337.12880.

[16]

L. Maldonado-Pereira, M. Schweiss, C. Barnaba, et al., The role of cholesterol oxidation products in food toxicity, Food Chem. Toxicol. 118 (2018) 908-939. https://doi.org/10.1016/j.fct.2018.05.059.

[17]

C. Yan, E. Kwek, H.F. Ding, et al., Dietary oxidized cholesterol aggravates chemically induced murine colon inflammation and alters gut microbial ecology, J. Agr. Food Chem. 70 (2022) 13289-13301. https://doi.org/10.1021/acs.jafc.2c05001.

[18]

C. Yan, S.H. Huang, H.F. Ding, et al., Adverse effect of oxidized cholesterol exposure on colitis is mediated by modulation of gut microbiota, J. Hazard. Mater. 459 (2023) 132057. https://doi.org/10.1016/j.jhazmat.2023.132057.

[19]

J. Liu, W. Hao, Z. He, et al., Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet, Food Funct. 10 (2019) 2847-2860. https://doi.org/10.1039/C8FO02051E.

[20]

S. Ravi, P. Duraisamy, M. Krishnan, et al., An insight on 7-ketocholesterol mediated inflammation in atherosclerosis and potential therapeutics, Steroids 172 (2021) 108854. https://doi.org/10.1016/j.steroids.2021.108854.

[21]

R. Cai, C. Cheng, J. Chen, et al., Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon, Gut Microbes 11(2020) 680-690. https://doi.org/10.1080/19490976.2020.1735606.

[22]

M. Kajiwara-Kubota, K. Uchiyama, K. Asaeda, et al., Partially hydrolyzed guar gum increased colonic mucus layer in mice via succinate-mediated MUC2 production, NPJ Sci. Food 7 (2023) 10. https://doi.org/10.1038/s41538-023-00184-4.

[23]

K. Bergstrom, L. Xia, The barrier and beyond: roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis, Gut Microbes 14 (2022) 2052699. https://doi.org/10.1080/19490976.2022.2052699.

[24]

S. Fernández-Tomé, L. Ortega Moreno, M. Chaparro, et al., Gut microbiota and dietary factors as modulators of the mucus layer in inflammatory bowel disease, Int. J. Mol. Sci. 22 (2021) 10224. https://doi.org/10.3390/ijms221910224.

[25]

S.M. Barbalho, H. Bosso, L.M. Salzedas-Pescinini, et al., Green tea: a possibility in the therapeutic approach of inflammatory bowel diseases? Green tea and inflammatory bowel diseases, Complement. Ther. Med. 43 (2019) 148-153. https://doi.org/https://doi.org/10.1016/j.ctim.2019.01.015.

[26]

L. Antoni, S. Nuding, J. Wehkamp, et al., Intestinal barrier in inflammatory bowel disease, World J. Gastroenterol. 20 (2014) 1165-1179. https://doi.org/10.3748/wjg.v20.i5.1165.

[27]

P. Paone, P.D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69 (2020) 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260.

[28]

M.F. Neurath, Targeting immune cell circuits and trafficking in inflammatory bowel disease, Nat. Immunol. 20 (2019) 970-979. https://doi.org/10.1038/s41590-019-0415-0.

[29]

F. Suriano, E.E.L. Nyström, D. Sergi, et al., Diet, microbiota, and the mucus layer: The guardians of our health, Front. Immunol. 13 (2022) 953196. https://doi.org/10.3389/fimmu.2022.953196.

[30]

M. Hussain, M. Umair Ijaz, M.I. Ahmad, et al., Meat proteins in a high-fat diet have a substantial impact on intestinal barriers through mucus layer and tight junction protein suppression in C57BL/6J mice, Food Funct. 10 (2019) 6903-6914. https://doi.org/10.1039/c9fo01760g.

[31]

M. Deiana, S. Calfapietra, A. Incani, et al., Derangement of intestinal epithelial cell monolayer by dietary cholesterol oxidation products, Free Radic. Biol. Med. 113 (2017) 539-550. https://doi.org/10.1016/j.freeradbiomed.2017.10.390.

[32]

T. Guina, M. Deiana, S. Calfapietra, et al., The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics, Food Funct. 6 (2015) 1218-1228. https://doi.org/10.1039/c4fo01116c.

[33]

R. Bansil, B.S. Turner, The biology of mucus: composition, synthesis and organization, Adv. Drug Deliv. Rev. 124 (2018) 3-15. https://doi.org/10.1016/j.addr.2017.09.023.

[34]

M.E. Johansson, M. Phillipson, J. Petersson, et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 15064-15069. https://doi.org/10.1073/pnas.0803124105.

[35]

M. Van Der Sluis, B.A. De Koning, A.C. De Bruijn, et al., Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection, Gastroenterology 131 (2006) 117-129. https://doi.org/10.1053/j.gastro.2006.04.020.

[36]

A. Christ, M. Lauterbach, E. Latz, Western diet and the immune system: an inflammatory connection, Immunity 51 (2019) 794-811. https://doi.org/10.1016/j.immuni.2019.09.020.

[37]

R. Wang, X. Yang, J. Liu, et al., Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate, Nat. Commun. 13 (2022) 2522. https://doi.org/10.1038/s41467-022-30240-8.

[38]

A.M. Rodríguez-Piñeiro, M.E. Johansson, The colonic mucus protection depends on the microbiota, Gut Microbes 6 (2015) 326-330. https://doi.org/10.1080/19490976.2015.1086057.

[39]

D. Yao, W. Dai, M. Dong, et al., MUC2 and related bacterial factors: therapeutic targets for ulcerative colitis, EBioMedicine 74 (2021) 103751. https://doi.org/10.1016/j.ebiom.2021.103751.

[40]

N.R. Shin, J.C. Lee, H.Y. Lee, et al., An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice, Gut 63 (2014) 727-735. https://doi.org/10.1136/gutjnl-2012-303839.

[41]

K.C.H. Van Der Ark, A.D.W. Nugroho, C. Berton-Carabin, et al., Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions, Food Res. Int. 102 (2017) 372-379. https://doi.org/10.1016/j.foodres.2017.09.004.

[42]

S.S. Seregin, N. Golovchenko, B. Schaf, et al., NLRP6 protects Il10-/- mice from colitis by limiting colonization of Akkermansia muciniphila, Cell Rep. 19 (2017) 733-745. https://doi.org/10.1016/j.celrep.2017.03.080.

[43]

S. Khan, S. Waliullah, V. Godfrey, et al., Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice, Sci. Transl. Med. 12 (2020). https://doi.org/10.1126/scitranslmed.aay6218.

[44]

B.P. Ganesh, R. Klopfleisch, G. Loh, et al., Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice, PLoS ONE 8 (2013) e74963. https://doi.org/10.1371/journal.pone.0074963.

[45]

G.P. Donaldson, S.M. Lee, S.K. Mazmanian, Gut biogeography of the bacterial microbiota, Nat. Rev. Microbiol. 14 (2016) 20-32. https://doi.org/10.1038/nrmicro3552.

[46]

D. Berry, B. Stecher, A. Schintlmeister, et al., Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing, PNAS 110 (2013) 4720-4725. https://doi.org/10.1073/pnas.1219247110.

[47]

C.W. Png, S.K. Lindén, K.S. Gilshenan, et al., Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria, Am. J. Gastroenterol. 105 (2010) 2420-2428. https://doi.org/10.1038/ajg.2010.281.

[48]

C. Schultsz, F.M. Van Den Berg, F.W. Ten Kate, et al., The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls, Gastroenterology 117 (1999) 1089-1097. https://doi.org/10.1016/s0016-5085(99)70393-8.

[49]

H.S. Oz, Chronic inflammatory diseases and green tea polyphenols, Nutrients 9 (2017) 561. https://doi.org/10.3390/nu9060561.

[50]

X. Yuan, Y. Long, Z. Ji, et al., Green tea liquid consumption alters the human intestinal and oral microbiome, Mol. Nutr. Food Res. 62 (2018) e1800178. https://doi.org/10.1002/mnfr.201800178.

[51]

H.C. Lee, A.M. Jenner, C.S. Low, et al., Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota, Res. Microbiol. 157 (2006) 876-884. https://doi.org/https://doi.org/10.1016/j.resmic.2006.07.004.

[52]

H. Sun, Y. Chen, M. Cheng, et al., The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro, J. Food Sci.Tech. 55 (2018) 399-407. https://doi.org/10.1007/s13197-017-2951-7.

[53]

Y. Liu, X. Wang, Q. Chen, et al., Camellia sinensis and Litsea coreana ameliorate intestinal inflammation and modulate gut microbiota in dextran sulfate sodium-induced colitis mice, Mol. Nutr. Food Res. 64 (2020) e1900943. https://doi.org/10.1002/mnfr.201900943.

[54]

C. Chen, H. Wang, T. Hong, et al., Effects of tea polysaccharides in combination with polyphenols on dextran sodium sulfate-induced colitis in mice, Food Chem.: X 13 (2022) 100190. https://doi.org/https://doi.org/10.1016/j.fochx.2021.100190.

Food Science and Human Wellness
Article number: 9250200
Cite this article:
Yan C, Huang S, Chen Z, et al. Dietary oxidized cholesterol causes mucus barrier thinner via decreasing Muc2 expression in the proximal colon and increasing the abundance of mucus-degrading bacteria. Food Science and Human Wellness, 2025, 14(4): 9250200. https://doi.org/10.26599/FSHW.2024.9250200
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return