Obesity has become a signifi cant global public health issue. Previous studies have found that the Chenpi has the anti-obesity activity. However, the anti-obesity phytochemicals and their mechanisms are still unclear. This study investigated the anti-obesity phytochemicals and molecular mechanisms involved in treating obesity by Chenpi through network pharmacology and molecular docking. A total of 17 bioactive phytochemicals from Chenpi and its 475 related anti-obesity targets have been identifi ed. The KEGG pathway analysis showed that the PI3K/Akt signaling pathway, MAPK signaling pathway, AMPK signaling pathway, and nuclear factor kappa B signaling pathway are the main signaling pathways involved in the anti-obesity effect of Chenpi. According to molecular docking analysis, the phytochemicals of Chenpi can bind to central anti-obesity targets. Based on the ADMET analysis and network pharmacology results, tangeretin exhibited the lowest predicted toxicity and potential for anti-obesity effects. In the in vitro lipid accumulation model, tangeretin effectively suppressed the free fatty acid-induced lipid in HepG2 cells by upregulating the PI3K/Akt/GSK3β signaling pathway based on the result of q-PCR and Western blotting. The outcomes of this research give insights for future research on the anti-obesity phytochemicals and molecular mechanisms derived from Chenpi, also providing the theoretical basis for developing anti-obesity functional foods based on Chenpi.
M. Blüher, Obesity: global epidemiology and pathogenesis, Nat. Rev. Endocrinol. 15 (2019) 288-298. https://doi.org/10.1038/s41574-019-0176-8.
A. Fernández-Sánchez, E. Madrigal-Santillán, M. Bautista, et al., Inflammation, oxidative stress, and obesity, Int. J. Mol. Sci. 12 (2011) 3117-3132. https://doi.org/10.3390/ijms12053117.
J.G. Kang, C.Y. Park, Anti-obesity drugs: a review about their effects and safety, Diabetes Metab. J. 36 (2012) 13-25. https://doi.org/10.4093/dmj.2012.36.1.13.
D.J. Williams, D. Edwards, I. Hamernig, et al., Vegetables containing phytochemicals with potential anti-obesity properties: a review, Food Res. Int. 52 (2013) 323-333. https://doi.org/10.1016/j.foodres.2013.03.015.
M. González-Castejón, A. Rodriguez-Casado, Dietary phytochemicals and their potential effects on obesity: a review, Pharmacol. Res. 64 (2011) 438-455. https://doi.org/10.1016/j.phrs.2011.07.004.
Y.C. Tung, P.H. Hsieh, M.H. Pan, et al., Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs, J. Food Drug Anal. 25 (2017) 100-110. https://doi.org/10.1016/j.jfda.2016.10.018.
Y. Liu, E. Heying, S.A. Tanumihardjo, History, global distribution, and nutritional importance of citrus fruits, Compr. Rev. Food Sci. F. 11 (2012) 530-545. https://doi.org/10.1111/j.1541-4337.2012.00201.x.
Y.P. Xin, T. Zheng, M. Zhang, et al., Demethylnobiletin and its major metabolites: efficient preparation and mechanism of their anti-proliferation activity in HepG2 cells, Food Sci. Hum. Wellness 11 (2022) 1191-1200. https://doi.org/10.1016/j.fshw.2022.04.018.
R.Y. Gan, Y. Liu, H. Li, et al., Natural sources, refined extraction, biosynthesis, metabolism, and bioactivities of dietary polymethoxyflavones (PMFs), Food Sci. Hum. Wellness 13 (2024) 27-49. https://doi.org/10.26599/FSHW.2022.9250003.
J.J. Guo, H.L. Tao, Y. Cao, et al., Prevention of obesity and type 2 diabetes with aged citrus peel (Chenpi) extract, J. Agr. Food Chem. 64 (2016) 2053- 2061. https://doi.org/10.1021/acs.jafc.5b06157.
Y.C. Chou, C.T. Ho, M.H. Pan, Immature Citrus reticulata extract promotes browning of beige adipocytes in high-fat diet-induced C57BL/6 mice, J. Agric. Food Chem. 66 (2018) 9697-9703. https://doi.org/10.1021/acs.jafc.8b02719.
Y.K. Lin, Y.M. Chung, H.T. Yang, et al., The potential of immature poken (Citrus reticulata) extract in the weight management, lipid and glucose metabolism, J. Complement. Integr. Med. 19 (2021) 279-285. https://doi.org/10.1515/jcim-2020-0478.
X.Y. Jiao, X. Jin, Y.Y. Ma, et al., A comprehensive application: molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine, Comput. Biol. Chem. 90 (2021) 107402. https://doi.org/10.1016/j.compbiolchem.2020.107402.
S. Li, Network pharmacology evaluation method guidance-draft, World J. Tradit. Chin. Med. 7 (2021) 146-154. https://doi.org/10.4103/wjtcm. wjtcm_11_21.
W. Xin, Z.Y. Wang, J.H. Zheng, et al., TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches, Chin. J. Nat. Medicines 19 (2021) 1-11. https://doi.org/10.1016/S1875-5364(21)60001-8.
Y.J. Yao, Z.F. Li, B.W. Qin, et al., Evaluation of the intracellular lipid-lowering effect of polyphenols extract from highland barley in HepG2 cells, Food Sci. Hum. Wellness 13 (2024) 454-461. https://doi.org/10.26599/FSHW.2022.9250039.
A. Gnoni, B. D. C. Stanca, L. Giannotti, et al., Quercetin reduces lipid accumulation in a cell model of NAFLD by inhibiting de novo fatty acid synthesis through the acetyl-CoA carboxylase 1/AMPK/PP2A axis, Int. J. Mol. Sci. 23 (2022) 1044. https://doi.org/10.3390/ijms23031044.
Z.Y. S.H. Ge, S.Y. Li, Wang, et al., Anti-obesity effect of trans-cinnamic acid on HepG2 cells and HFD-fed mice, Food Chem. Toxicol. 137 (2020) 111148. https://doi.org/10.1016/j.fct.2020.111148.
J.L. Liu, L.N. Han, L.L. Zhu, et al., Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats, Lipids Health Dis. 15 (2016) 1-9. https://doi.org/10.1186/s12944-016-0194-7.
M.J. Gómez-Lechón, M.T. Donato, A. Martínez-Romero, et al., A human hepatocellular in vitro model to investigate steatosis, Chem. Biol. Interact. 165 (2007) 106-116. https://doi.org/10.1016/j.cbi.2006.11.004.
J.L. Ru, P. Li, J.N. Wang, et al., TCMSP: a database of systems pharmacology for drug discovery from herbal medicines, J. Cheminformatics 6 (2014) 1-6. https://doi.org/10.1186/1758-2946-6-13.
Q. Wang, Y. Liang, C. Peng, et al., Network pharmacology-based study on the mechanism of Scutellariae Radix for hepatocellular carcinoma treatment, Evid-based Compl. Alt. Med. 2020. https://doi.org/10.1155/2020/889791.
J. Liu, J. Liu, X. Tong, et al., Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis, Drug Des. Dev. Ther. 15 (2021) 3255-3276. https://doi.org/10.2147/DDDT.S319786.
A. Daina, O. Michielin, V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47 (2019) W357-W364. https://doi.org/10.1093/nar/gkz382.
M.J. Keiser, B. L Roth, B. N Armbruster, et al., Relating protein pharmacology by ligand chemistry, Nat. Biotechnol. 25 (2007) 197-206. https://doi.org/10.1038/nbt1284.
E. Coudert, S. Gehant, E. de Castro, et al., Annotation of biologically relevant ligands in UniProtKB using ChEBI, Bioinformatics 39 (2023) btac793. https://doi.org/10.1093/bioinformatics/btac793.
D.S. Wishart, Y.D Feunang, A.C. Guo, et al., DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids Res. 46 (2018) D1074-D1082. https://doi.org/10.1093/nar/gkx1037.
J. Piñero, J. M. Ramírez-Anguita, J. Saüch-Pitarch, et al., The DisGeNET knowledge platform for disease genomics: 2019 update, Nucleic Acids Res. 48 (2020) D845-D855. https://doi.org/10.1093/nar/gkz1021.
D. Szklarczyk, R. Kirsch, M. Koutrouli, et al., The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Res. 51 (2023) D638-D646. https://doi.org/10.1093/nar/gkac1000.
J. Piñero, J. Saüch, F. Sanz, et al., The DisGeNET cytoscape app: exploring and visualizing disease genomics data, Comput. Struct. Bio.Tec. 19 (2021) 2960-2967. https://doi.org/10.1016/j.csbj.2021.05.01.
L.Y. Liu, Y. Jiao, M. Yang, et al., Network pharmacology, molecular docking and molecular dynamics to explore the potential immunomodulatory mechanisms of deer antler, Int. J. Mol. Sci. 24 (2023) 10370. https://doi.org/10.3390/ijms241210370.
Y.Y. Zhou, B. Zhou, L. Pache, et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun. 10 (2019) 1523. https://doi.org/10.1038/s41467-019-09234-6.
PyMOL, The PyMOL Molecular Graphics System, Version 2.0. Schrödinger. LLC, 2017.
A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717. https://doi.org/10.1038/srep42717.
L. Siculella, R. Tocci, A. Rochira, et al., Lipid accumulation stimulates the cap-independent translation of SREBP-1a mRNA by promoting hnRNP A1 binding to its 5'-UTR in a cellular model of hepatic steatosis, Biochim. Biophys. Acta 1861 (2016) 471-481. https://doi.org/10.1016/j.bbalip.2016.02.003.
J.M. Zou, J.J. Wang, W.L. Ye, et al., Citri Reticulatae Pericarpium (Chenpi): a multi-efficacy pericarp in treating cardiovascular diseases, Biome. Pharmacother. 154 (2022) 113626. https://doi.org/10.1016/j.biopha.2022.113626.
Y. Liu, J.Y. Zhang, X.K. Liu, et al., Investigation on the mechanisms of guiqi huoxue capsule for treating cervical spondylosis based on network pharmacology and molecular docking, Medicine 100 (2021) e26643. https://doi.org/10.1097%2FMD.0000000000026643.
H. Li, C.W. Yap, C.Y. Ung, et al., Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins, J. Pharm. Sci. 96 (2007) 2838-2860. https://doi.org/10.1002/jps.20985.
W.F. Luo, J. Deng, J.C. He, et al., Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes, J. Cell Mol. Med. 2023. https://doi.org/10.1111/jcmm.1778.
L.C. Miao, H.L. Zhang, M.S. Cheong, et al., Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells, Food Sci. Hum. Wellness 12 (2023) 1991-2000. https://doi.org/10.1016/j.fshw.2023.03.02.
X.J. Huang, G.H. Liu, J. Guo, et al., The PI3K/AKT pathway in obesity and type 2 diabetes, Int. J. Biol. Sci. 14 (2018) 1483. https://doi.org/10.7150%2Fijbs.27173.
S.S. Dong, D.L. Zhu, X.R. Zhou, et al., An intronic risk SNP rs12454712 for central obesity acts as an allele-specific enhancer to regulate BCL2 expression, Diabetes 70 (2021) 1679-1688. https://doi.org/10.2337/db20-1151.
Z.Y. Wang, Z.M. Jiang, P.T. Xiao, et al., The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach, Eur. J. Pharmacol. 878 (2020) 173103. https://doi.org/10.1016/j.ejphar.2020.17310.
S.R. Cao, Y. Pan, J.Q. Tang, et al., EGFR-mediated activation of adipose tissue macrophages promotes obesity and insulin resistance, Nat. Commun. 13 (2022) 4684. https://doi.org/10.1038/s41467-022-32348-.
Z. Wang, O.J. Shah, T. Hunter, The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models, PLoS ONE 7(7) (2012) e36961. https://doi.org/10.1371/journal.pone.0036961.
C.P. Kung, S. Basu, M.E. Murphy, A link between TP53 polymorphisms and metabolism, Mol. Cell. Oncol. 3 (2016) e1173769. https://doi.org/10.1080/23723556.2016.1173769.
I.B.A.P. Manuaba, D.A. Sindhughosa, Immune regulation in obesity: a narrative review, Indonesia J. Biomed. Sci. 17 (2023) 67-74. https://doi.org/10.15562/ijbs.v17i1.459.
H. Wu, J.Q. Wang, Y.W. Yang, et al., Preliminary exploration of the mechanism of Qingfei Paidu decoction against novel coronavirus pneumonia based on network pharmacology and molecular docking technology, Acta Pharmacol. Sin. 55 (2020) 374-383. https://doi.org/10.16438/j.0513-4870.2020-0136.
X. Wen, B.H. Zhang, B.Y. Wu, et al., Signaling pathways in obesity: mechanisms and therapeutic interventions, Signal Transduct. Target. Ther. 7 (2022) 298. https://doi.org/10.1038/s41392-022-01149-x.
T. Kassouf, G. Sumara, Impact of conventional and atypical MAPKs on the development of metabolic diseases, Biomolecules 10 (2020) 1256. https://doi.org/10.3390/biom10091256.
H. Yaribeygi, T. Sathyapalan, S. L. Atkin, et al., Molecular mechanisms linking oxidative stress and diabetes mellitus, Oxid. Med. Cell Longev. 2020 (2020) 8609213. https://doi.org/10.1155/2020/8609213.
M. López, R. Nogueiras, M. Tena-Sempere, et al., Hypothalamic AMPK: a canonical regulator of whole-body energy balance, Nat. Rev. Endocrinol. 12 (2016) 421-432. https://doi.org/10.1038/nrendo.2016.67.
F.F. Cai, Y.Q. Bian, R. Wu, et al., Yinchenhao decoction suppresses rat liver fibrosis involved in an apoptosis regulation mechanism based on network pharmacology and transcriptomic analysis, Biome. Pharmacother. 114 (2019) 108863. https://doi.org/10.1016/j.biopha.2019.108863..