PDF (4.6 MB)
Collect
Submit Manuscript
Article | Open Access

Screening of Chinese giant salamander meat hydrolysates with DPP-Ⅳ inhibitory activity and systematic elucidation of their hypoglycemic functions in mouse model

Shucheng Lia,b,1Changge Guana,1Yi WangaHaihong ChencWei LicSongjun WangdChong Zhanga,b,eXinhui Xinga,c,e,f()
Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 225-8501, Japan
Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
Henan Giant Salamander Protection and Development Association, Luoyang 471000, China
Center for Synthetic and Systems Biology, Tsinghua University, Beijing100084, China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China

1 These authors contributed equally to this work.

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Type 2 diabetes (T2D) presents a significant health challenge, underscoring the need for functional foods and nutraceutical hypoglycemic bioactive peptides for its prevention. This study investigates the potential of proteolytic hydrolysate from artificially cultivated Chinese giant salamander (CGS) meat, a rich protein source, as a preventive strategy for T2D. We produced a CGS meat hydrolysate (CGSh) and demonstrated its ability to inhibit the T2D drug target dipeptidyl peptidase Ⅳ (DPP-Ⅳ) through in vitro assays. We identified 5 peptides (WRPPDH, WAPPSKD, IPDSPF, IPEMIF, and VPIAVPT) with high DPP-Ⅳ inhibitory activity in CGSh, suggesting its potential antidiabetic effects. In vivo experiments showed that CGSh effectively reduced insulin resistance in mice induced with a high-fat diet, as evidenced by a slower increase in blood glucose levels and a decreased HOMA-IR index. 16S rRNA sequencing analysis revealed that CGSh improved gut microbial homeostasis, promoting beneficial microorganisms and reducing harmful bacteria. Metabolomic analyses identified an increase in valeric acid levels and highlighted nine potential biomarker metabolites. By inhibiting metabolic pathways such as AGE-RAGE, CGSh might also prevent diabetic complications and reduce inflammation. These findings suggest that CGSh has a promising hypoglycemic effect, making it a potential functional food ingredient for T2D prevention and treatment.

Electronic Supplementary Material

Download File(s)
fshw-14-4-9250206_ESM1.docx (584.4 KB)
fshw-14-4-9250206_ESM2.xls (356 B)
fshw-14-4-9250206_ESM3.xlsx (3.6 MB)

References

[1]
IDF Diabetes Atlas, 10th ed, International Diabetes Federation, Brussels, Belgium, 2021.
[2]

M.A. Hayat, Handbook of immunohistochemistry and in situ hybridization of human carcinomas, Academic Press, 1st ed, 2006.

[3]

Y. Misumi, Y. Hayashi, F. Arakawa, et al., Molecular cloning and sequence analysis of human dipeptidyl peptidase Ⅳ, a serine proteinase on the cell surface, Biochim. Biophys. Acta 1131 (1992) 333-336. https://doi.org/10.1016/0167-4781(92)90036-y.

[4]

G.I. Bell, R.F. Santerre, G.T. Mullenbach, Hamster preproglucagon contains the sequence of glucagon and two related peptides, Nature 302 (1983) 716-718. https://doi.org/10.1038/302716a0.

[5]

C. Ørskov, J.J. Holst, S. Knuhtsen, et al., Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas, Endocrinology 119 (1986) 1467-1475. https://doi.org/10.1210/endo-119-4-1467.

[6]

T.J. Kieffer, C.H. McIntosh, R.A. Pederson, Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase Ⅳ, Endocrinology 136 (1995) 3585-3596. https://doi.org/10.1210/endo.136.8.7628397.

[7]

R. Mentlein, B. Gallwitz, W.E. Schmidt, Dipeptidyl-peptidase Ⅳ hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum, Eur. J. Biochem. 214 (1993) 829-835. https://doi.org/10.1111/j.1432-1033.1993.tb17986.x.

[8]

C.F. Deacon, A.H. Johnsen, J.J. Holst, Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo, J. Clin. Endocr. Metab. 80 (1995) 952–957. https://doi.org/10.1210/jcem.80.3.7883856.

[9]

P. Shah, A. Ardestani, G. Dharmadhikari, S. Laue, et al., The DPP-4 inhibitor linagliptin restores β-cell function and survival in human isolated islets through GLP-1 stabilization, J. Clin. Endocr. Metab. 98 (2013) E1163-E1172. https://doi.org/10.1210/jc.2013-1029.

[10]

Y. Zhang, M. Wu, W. Htun, et al., Differential effects of linagliptin on the function of human islets isolated from non-diabetic and diabetic donors, Sci. Rep. 7 (2017) 7964. https://doi.org/10.1038/s41598-017-08271-9.

[11]

M. Bugliani, F. Syed, F.M.M. Paula, et al, DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes, Mol. Cell. Endocrinol. 473 (2018) 186-193. https://doi.org/10.1016/j.mce.2018.01.019.

[12]

M.J. Davies, V.R. Aroda, B.S. Collins, et al., Management of dyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD), Diabetes Care 45 (2022) 2753-2786. https://doi.org/10.2337/dci22-0034.

[13]

C.F. Deacon, A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials, Diabetes Obes. Metab. 20 (2018) 34-46. https://doi.org/10.1111/dom.13135.

[14]
U.S. Food & Drug Administration, FDA Drug Safety Communication: FDA warns that DPP-4 inhibitors for type 2 diabetes may cause severe joint pain, (2015).
[15]

R. Liu, J. Cheng, H. Wu, Discovery of food-derived dipeptidyl peptidase Ⅳ inhibitory peptides: a review, Int. J. Mol. Sci. 20 (2019) 463. https://doi.org/10.3390/ijms20030463.

[16]

A.C. Neves, P.A. Harnedy, M.B. O’Keeffe, et al., Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase Ⅳ inhibitory, and antioxidant activities, Food Chem. 218 (2017) 396-405. https://doi.org/10.1016/j.foodchem.2016.09.053.

[17]

Y. Zhang, R. Chen, X. Chen, et al., Dipeptidyl peptidase Ⅳ-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix Val.) proteins, J. Agric. Food Chem. 64 (2016) 831-839. https://doi.org/10.1021/acs.jafc.5b05429.

[18]

W. Ji, C. Zhang, H. Ji, Two novel bioactive peptides from Antarctic krill with dual angiotensin converting enzyme and dipeptidyl peptidase Ⅳ inhibitory activities, J. Food Sci. 82 (2017) 1742-1749. https://doi.org/10.1111/1750-3841.13735.

[19]

A. Sánchez, A. Vázquez, Bioactive peptides: a review, Food Qual. Saf. 1 (2017) 29-46. https://doi.org/10.1093/fqsafe/fyx006.

[20]

A.A. Cunningham, S.T. Turvey, F. Zhou, et al., Development of the Chinese giant salamander Andrias davidianus farming industry in Shaanxi province, China: conservation threats and opportunities, Oryx 50 (2016) 265-273. https://doi.org/10.1017/S0030605314000842.

[21]

K. Zhang, X. Wang, W. Wu, et al, Advances in conservation biology of Chinese gaint salamander, Biodiversity Science 10 (2002) 291-297.

[22]
W. Jiang, H. Tian, L. Zhang, Husbandry, captive breeding, and field survey of Chinese Giant Salamander (Andrias davidianus), in: A.W. Seifert, J.D Currie (eds), Methods in molecular biology, 2562 (2023) 75-92. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_4.
[23]

M. Tao, D. He, C. Chen, et al., Current status of the farming industry of Chinese Giant Salamander and development directions of health products from this amphibian: an analysis from the perspective of intellectual property rights, Food Sci. 43 (2022) 364. https://doi.org/10.7506/spkx1002-6630-20210826-331.

[24]

D. He, W. Zhu, W. Zeng, et al., Nutritional and medicinal characteristics of Chinese giant salamander (Andrias davidianus) for applications in healthcare industry by artificial cultivation: a review, Food Sci. Hum. Wellness 7 (2018) 1-10. https://doi.org/10.1016/j.fshw.2018.03.001.

[25]

W. Ai, S. Chen, G. Zeng, et al., Nutritional components of the muscle of the artificial breeding Chinese Giant Salamander in simulated ecological condition, J. Hydroecol. 29 (2008) 120-123. https://doi.org/10.15928/j.1674-3075.2008.06.030.

[26]

Y. He, W. Jin, D. Chen, et al., Antioxidant and immunological activities of enzymatic peptides from Chinese giant salamander meat, Journal of Shaanxi University of Technology (Natural Science Edition) 36 (2020) 81-86.

[27]

L. Wang, Y. Zheng, M. Ai, et al., Analysis of the nutritional ingredient and nutrient value of the muscle and tail lipid in Chinese giant salamander (Andrias davidianus), Journal of Northwest A & F University (Natural Science Edition) 39 (2011) 67-74. https://doi.org/10.13207/j.cnki.jnwafu.2011.02.035.

[28]

C. Guan, Z. Tan, S. Li, et al., Transcriptomic analysis of Andrias davidianus meat and experimental validation for exploring its bioactive components as functional foods, Food Sci. Hum. Wellness 13 (2024) 166-172. https://doi.org/10.26599/FSHW.2022.9250014.

[29]

A.B. Nongonierma, R.J. FitzGerald, Inhibition of dipeptidyl peptidase Ⅳ (DPP-Ⅳ) by tryptophan containing dipeptides, Food Funct. 4 (2013) 1843-1849. https://doi.org/10.1039/C3FO60262A.

[30]

C. Guan, S. Iwatani, X. Xing, et al., Strategic preparations of DPP-Ⅳ inhibitory peptides from Val-Pro-Xaa and Ile-Pro-Xaa peptide mixtures, Int. J. Pept. Res. Ther. 27 (2021) 735-743. https://doi.org/10.1007/s10989-020-10122-7.

[31]

L.F. Daniels Gatward, M.R. Kennard, L.I.F. Smith, et al., The use of mice in diabetes research: the impact of physiological characteristics, choice of model and husbandry practices, Diabetic Med. 38 (2021) e14711. https://doi.org/10.1111/dme.14711.

[32]

J. Oraha, R.F. Enriquez, H. Herzog, et al., Sex-specific changes in metabolism during the transition from chow to high-fat diet feeding are abolished in response to dieting in C57BL/6J mice, Int. J. Obes. 46 (2022) 1749-1758. https://doi.org/10.1038/s41366-022-01174-4.

[33]

Z. Chen, D. Radjabzadeh, L. Chen, et al., Voortman, association of insulin resistance and type 2 diabetes with gut microbial diversity: a microbiome-wide analysis from population studies, JAMA Network Open 4 (2021) e2118811. https://doi.org/10.1001/jamanetworkopen.2021.18811.

[34]

L. Li, R. Sun, Y. Miao, et al., PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognostic impact in patients with diffuse large B-cell lymphoma having T-cell infiltration: a study from the International DLBCL Consortium Program, Mod. Pathol. 32 (2019) 741-754. https://doi.org/10.1038/s41379-018-0193-5.

[35]

I. Blaženović, T. Kind, J. Ji, et al., Software tools and approaches for compound identification of LC-MS/MS data in metabolomics, Metabolites 8 (2018) 31. https://doi.org/10.3390/metabo8020031.

[36]

B.J. Callahan, P.J. McMurdie, M.J. Rosen, et al., DADA2: high-resolution sample inference from illumina amplicon data, Nat. Methods 13 (2016) 581-583. https://doi.org/10.1038/nmeth.3869.

[37]

C. Quast, E. Pruesse, P. Yilmaz, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res. 41 (2012) 590-596. https://doi.org/10.1093/NAR/GKS1219.

[38]

R. Jin, X. Teng, J. Shang, et al., Identification of novel DPP-Ⅳ inhibitory peptides from Atlantic salmon (Salmo salar) skin, Food Res. Int. 133 (2020) 109161. https://doi.org/10.1016/j.foodres.2020.109161.

[39]

R. Cabizza, F. Fancello, G.L. Petretto, et al., Exploring the DPP-Ⅳ inhibitory, antioxidant and antibacterial potential of ovine “Scotta” hydrolysates, Foods 10 (2021) 3137. https://doi.org/10.3390/foods10123137.

[40]

F. Rivero-Pino, F.J. Espejo-Carpio, E.M. Guadix, Production and identification of dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory peptides from discarded Sardine pilchardus protein, Food Chem. 328 (2020) 127096. https://doi.org/10.1016/j.foodchem.2020.127096.

[41]

R. Mentlein, Dipeptidyl-peptidase Ⅳ (CD26)-role in the inactivation of regulatory peptides, Regulatory Peptides 85 (1999) 9-24. https://doi.org/10.1016/S0167-0115(99)00089-0.

[42]

K. Sato, S. Miyasaka, A. Tsuji, et al., Isolation and characterization of peptides with dipeptidyl peptidase Ⅳ (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae, Food Chem. 261 (2018) 51-56. https://doi.org/10.1016/j.foodchem.2018.04.029.

[43]

B. Gallwitz, Review of sitagliptin phosphate: a novel treatment for type 2 diabetes, Vasc. Health Risk Manag. 3 (2007) 203-210.

[44]
P. Nadkarni, O.G. Chepurny, G.G. Holz, Regulation of glucose homeostasis by GLP-1, in Y.X. Tao (Ed.), Progress in molecular biology and translational science, Academic Press, 2014, pp. 23-65. https://doi.org/10.1016/B978-0-12-800101-1.00002-8.
[45]

D.J. Drucker, M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes, The Lancet 368 (2006) 1696-1705. https://doi.org/10.1016/S0140-6736(06)69705-5.

[46]

L.L. Baggio, D.J. Drucker, Biology of incretins: GLP-1 and GIP, Gastroenterology 132 (2007) 2131-2157. https://doi.org/10.1053/j.gastro.2007.03.054.

[47]

S. Seino, T. Shibasaki, PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis, Physiol. Rev. 85 (2005) 1303-1342. https://doi.org/10.1152/physrev.00001.2005.

[48]

R. Jumpertz, D.S. Le, P.J. Turnbaugh, et al., Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans, Am. J. Clin. Nutr. 94 (2011) 58-65. https://doi.org/10.3945/ajcn.110.010132.

[49]

F.M. Silva-Veiga, C.S. Miranda, F.F. Martins, et al., Gut-liver axis modulation in fructose-fed mice: a role for PPAR-alpha and linagliptin, J. Endocrinol. 247 (2020) 11-24. https://doi.org/10.1530/JOE-20-0139.

[50]

T. Yang, M.M. Santisteban, V. Rodriguez, et al., Gut dysbiosis is linked to hypertension, Hypertension 65 (2015) 1331-1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315.

[51]

L. Bordalo Tonucci, K.M.O. Dos Santos, C.L. De Luces Fortes Ferreira, et al., Gut microbiota and probiotics: Focus on diabetes mellitus, Crit. Rev. Food Sci. 57 (2017) 2296-2309. https://doi.org/10.1080/10408398.2014.934438.

[52]

R.R. Rodrigues, M. Gurung, Z. Li, et al., Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes, Nat. Commun. 12 (2021) 101. https://doi.org/10.1038/s41467-020-20313-x.

[53]

Y. Nagasawa, S. Katagiri, K. Nakagawa, et al., Xanthan gum-based fluid thickener decreases postprandial blood glucose associated with increase of Glp1 and Glp1r expression in ileum and alteration of gut microbiome, J. Funct. Foods 99 (2022) 105321. https://doi.org/10.1016/j.jff.2022.105321.

[54]

G. Rizzatti, L.R. Lopetuso, G. Gibiino, et al., Proteobacteria: a common factor in human diseases, Biomed Res. Int. 2017 (2017) e9351507. https://doi.org/10.1155/2017/9351507.

[55]

A.E. Paharik, A.R. Horswill, The staphylococcal biofilm: adhesins, regulation, and host response, Microbiol. Spectr. 4 (2016). https://doi.org/10.1128/microbiolspec.VMBF-0022-2015.

[56]

K.K. Kim, J.S. Lee, D.A. Stevens, Microbiology and epidemiology of Halomonas species, Future Microbiol. 8 (2013) 1559-1573. https://doi.org/10.2217/fmb.13.108.

[57]

Q.R. Ducarmon, R.D. Zwittink, B.V.H. Hornung, et al., Gut microbiota and colonization resistance against bacterial enteric infection, Microbiol. Mol. Biol. R. 83 (2019) e00007-19. https://doi.org/10.1128/MMBR.00007-19.

[58]

C. Guo, Y. Li, P. Wang, et al., Alterations of gut microbiota in cholestatic infants and their correlation with hepatic function, Front. Microbiol. 9 (2018) 2682. https://doi.org/10.3389/fmicb.2018.02682.

[59]

J. Vangipurapu, L. Fernandes Silva, T. Kuulasmaa, et al, Microbiota-related metabolites and the risk of type 2 diabetes, Diabetes Care 43 (2020) 1319-1325. https://doi.org/10.2337/dc19-2533.

[60]

L. Zhai, J. Wu, Y.Y. Lam, et al., Gut-microbial metabolites, probiotics and their roles in type 2 diabetes, IJMS 22 (2021) 12846. https://doi.org/10.3390/ijms222312846.

[61]

C. Gu, X. Mao, D. Chen, et al., Isoleucine plays an important role for maintaining immune function, Curr. Protein Pept. Sci. 20 (2019) 644-651. https://doi.org/10.2174/1389203720666190305163135.

[62]

D.J. Son, S.Y. Hwang, M.-H. Kim, et al., Anti-diabetic and hepato-renal protective effects of ziyuglycoside Ⅱ methyl ester in type 2 diabetic mice, Nutrients 7 (2015) 5469-5483. https://doi.org/10.3390/nu7075232.

[63]

J.A. Pfefferkorn, J. Lou, M.L. Minich, et al., Pyridones as glucokinase activators: identification of a unique metabolic liability of the 4-sulfonyl-2-pyridone heterocycle, Bioorg. Med. Chem. Lett. 19 (2009) 3247-3252. https://doi.org/10.1016/j.bmcl.2009.04.107.

[64]

R. Costa, I. Rodrigues, L. Guardão, et al., Modulation of VEGF signaling in a mouse model of diabetes by xanthohumol and 8-prenylnaringenin: Unveiling the angiogenic paradox and metabolism interplay, Mol. Nutr. Food Res. 61 (2017) 1600488. https://doi.org/10.1002/mnfr.201600488.

[65]

R. Costa, I. Rodrigues, L. Guardão, et al., Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice, J. Nutr. Biochem. 45 (2017) 39-47. https://doi.org/10.1016/j.jnutbio.2017.03.006.

[66]

S. Park, K.S. Sim, Y. Hwangbo, et al., Naringenin and phytoestrogen 8-prenylnaringenin protect against islet dysfunction and inhibit apoptotic signaling in insulin-deficient diabetic mice, Molecules 27 (2022) 4227. https://doi.org/10.3390/molecules27134227.

[67]

P. Sen, T. Hyötyläinen, M. Orešič, 1-Deoxyceramides – key players in lipotoxicity and progression to type 2 diabetes? Acta Physiologica 232 (2021) e13635. https://doi.org/10.1111/apha.13635.

[68]

A. Twarda-Clapa, A. Olczak, A.M. Białkowska, et al., Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs, Cells 11 (2022) 1312. https://doi.org/10.3390/cells11081312.

[69]

K. Taguchi, K. Fukami, RAGE signaling regulates the progression of diabetic complications, Front. Pharmacol. 14 (2023). https://doi.org/10.3389/fphar.2023.1128872.

[70]

I.K. Lukic, P.M. Humpert, P.P. Nawroth, et al., The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy, Ann. N.Y. Acad. Sci. 1126 (2008) 76–80. https://doi.org/10.1196/annals.1433.059.

Food Science and Human Wellness
Article number: 9250206
Cite this article:
Li S, Guan C, Wang Y, et al. Screening of Chinese giant salamander meat hydrolysates with DPP-Ⅳ inhibitory activity and systematic elucidation of their hypoglycemic functions in mouse model. Food Science and Human Wellness, 2025, 14(4): 9250206. https://doi.org/10.26599/FSHW.2024.9250206
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return