PDF (6.5 MB)
Collect
Submit Manuscript
Article | Open Access

Sturgeon cartilage-derived chondroitin sulfate exhibited anti-inflammatory activity against dextran sulfate sodium-induced colitis via modification of gut microbiota

Ruiyun Wua,bZixin HanbZhenyu WangaPinglan LicNan Shangb()
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
Collage of Engineering, China Agricultural University, Beijing 100083, China
Collage of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Administration of sturgeon-derived chondroitin sulfate (SCS) alleviates DSS-induced colitis via inflammatory response.

• Administration of SCS can rebuild the gut microenvironment in DSS-induced mice.

• SCS can stimulate the synthesis of bile acids, inhibit the NF-κB signaling pathway, and alleviate DSS-induced colitis.

Graphical Abstract

View original image Download original image

Abstract

Chondroitin sulfate (CS) is one of the main bioactive compounds in animal cartilage. In this study, the anti-inflammatory activity of sturgeon-derived chondroitin sulfate (SCS) was evaluated in the dextran sulfate sodium (DSS)-induced BALB/c mice model. Orally administration of SCS significantly alleviated the DSS-induced colitis symptoms, including the reduction of crypt depth, inhibition of the abnormal crypt foci formation, down-regulation of the proinflammatory biomarkers (NO, interleukin (IL)-6, IL-1β and tumor necrosis factor-α) and up-regulation of the anti-inflammatory biomarkers (IL-10 and IL-4). The gut microbiota analysis revealed that SCS alters the intestinal microbiota composition in colitis mice, especially the increase of the relative abundance of Ruminococcaceae and Lachnospiraceae. This alternation further induced primary bile acids convert into secondary bile acids. With SCS administration, the levels of deoxycholic acid (DCA) and litho cholic acid (LCA) were increased by 1.5- and 2.5-fold, respectively. The stimulated secretion of DCA and LCA showed further activation of the NF-κB signaling pathway, thereby suppressing the inflammatory response and attenuating inflammatory bowel disease (IBD) in mice. This study provided a valuable strategy for colitis prevention and treatment with sturgeon cartilage by-products.

Electronic Supplementary Material

Download File(s)
fshw-14-4-9250227_ESM.docx (22.9 KB)

References

[1]

Y. Wang, N. Zhang, J. Kan, et al., Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice, Carbohydr. Polym. 213 (2019) 89-99. https://doi.org/10.1016/j.carbpol.2019.02.090.

[2]

T. Kobayashi, B. Siegmund, C. Le Berre, et al., Ulcerative colitis, Nat. Rev. Dis. Primers. 6(1) (2020) 74. https://doi.org/10.1038/s41572-020-00215-4.

[3]

F. Imhann, K.J. Van der Velde, R. Barbieri, et al., Correction to: the 1000IBD project: multi-omics data of 1000 inflammatory bowel disease patients; data release 1, BMC Gastroenterol. 19 (2019). https://doi.org/10.1186/s12876-019-0938-8.

[4]

H. Duboc, S. Rajca, D. Rainteau, et al., Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases, Gut 62 (2013) 531-539. https://doi.org/10.1136/gutjnl-2012-302578.

[5]

L. Ai, Y. Ren, M. Zhu, et al., Synbindin restrains proinflammatory macrophage activation against microbiota and mucosal inflammation during colitis, Gut 70 (2021) 2261-2272. https://doi.org/10.1136/gutjnl-2020-321094.

[6]

M.C. Mentella, F. Scaldaferri, M. Pizzoferrato, et al., Nutrition, IBD and gut microbiota: a review, Nutrients 12 (2020) 944. https://doi.org/10.3390/nu12040944.

[7]

T.A. Suzuki, J.L. Fitzstevens, V.T. Schmidt, et al., Codiversification of gut microbiota with humans, Science 377 (2022) 1328-1332. https://doi.org/10.1126/science.abm7759.

[8]

J.C. Lee, Predicting the course of IBD: light at the end of the tunnel? Dig. Dis. 30 (2012) 95-99. https://doi.org/10.1159/000341132.

[9]

E.J. Loftus, S.V. Kane, D. Bjorkman, Systematic review: short-term adverse effects of 5-aminosalicylic acid agents in the treatment of ulcerative colitis, Aliment. Pharmacol. Ther. 19 (2004) 179-189. https://doi.org/10.1111/j.0269-2813.2004.01827.x.

[10]

T. Kobayashi, B. Siegmund, C. Le Berre, et al., Ulcerative colitis, Nat. Rev. Dis. Primers 6 (2020) 74. https://doi.org/10.1038/s41572-020-00215-4.

[11]

J. Xu, T. Shi, Y. Zhang, et al., Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating redox balance, immune responses, and the gut microbiome, Adv. Mater. 35 (2023) e2207890. https://doi.org/10.1002/adma.202207890.

[12]

J.N. Chu, G. Traverso, Foundations of gastrointestinal-based drug delivery and future developments, Nat. Rev. Gastroenterol. Hepatol. 19 (2022) 219-238. https://doi.org/10.1038/s41575-021-00539-w.

[13]

M. Swierczewska, H.S. Han, K. Kim, et al., Polysaccharide-based nanoparticles for theranostic nanomedicine, Adv. Drug Delivery Rev. 99 (2016) 70-84. https://doi.org/10.1016/j.addr.2015.11.015.

[14]

J. Suez, N. Zmora, E. Segal, et al., The pros, cons, and many unknowns of probiotics, Nat. Med. 25 (2019) 716-729. https://doi.org/10.1038/s41591-019-0439-x.

[15]

N. Misaki, O. Kawano, M. Uchida, et al., Role of the mucus gel layer in the healing of acetic acid-induced gastric ulcers in rats, Scand. J. Gastroentero. 24 (2009) 158-161. https://doi.org/10.3109/00365528909091150.

[16]

J.A. Vazquez, I. Rodriguez-Amado, M.I. Montemayor, et al., Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review, Mar. Drugs 11 (2013) 747-74. https://doi.org/10.3390/md11030747.

[17]

M. Fani, N. Khodadad, S. Ebrahimi, et al., Zinc sulfate in narrow range as an in vitro anti-HSV-1 assay, Biol. Trace Elem. Res. 193 (2020) 410-413. https://doi.org/10.1007/s12011-019-01728-0.

[18]

W. Zhu, Y. Ji, Y. Wang, et al, Structural characterization and in vitro antioxidant activities of chondroitin sulfate purified from Andrias davidianus cartilage, Carbohydr. Polym. 196 (2018) 398-404. https://doi.org/10.1016/j.carbpol.2018.05.047.

[19]

R. Wu, P. Li, Y. Wang, et al., Structural analysis and anti-cancer activity of low-molecular-weight chondroitin sulfate from hybrid sturgeon cartilage, Carbohydr. Polym. 275 (2022) 118700. https://doi.org/10.1016/j.carbpol.2021.118700.

[20]

T. Zhao, Y. Zhou, G. Mao, et al., Extraction, purification and characterisation of chondroitin sulfate in Chinese sturgeon cartilage, J. Sci. Food Agric. 93 (2013) 1633-1640. https://doi.org/10.1002/jsfa.5937.

[21]

M. Gui, J. Song, L. Zhang, et al., Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone, Carbohyd. Polym. 123 (2015) 454-460. https://doi.org/10.1016/j.carbpol.2015.01.046.

[22]

R. Wu, N. Shang, M. Gui, et al., Sturgeon (Acipenser)-derived chondroitin sulfate suppresses human colon cancer HCT-116 both in vitro and in vivo by inhibiting proliferation and inducing apoptosis, Nutrients 12(4) (2020) 1130. https://doi.org/10.3390/nu12041130.

[23]

T. Eom, Y. Kim, C. Choi, et al., Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease, J. Microbiol. 56 (2018) 189-198. https://doi.org/10.1007/s12275-018-8049-8.

[24]

W. Yao, Z. Nianfeng, K. Juan, et al., Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice, Carbohyd. Polym. 213 (2019) 89-99. https://doi.org/10.1016/j.carbpol.2019.02.090.

[25]

H. Yusuke, H. Jiro, Y. Chihiro, et al., Effects of chondroitin sulfate on colitis induced by dextran sulfate sodium in rats, Japanese J. Pharmacol. 85 (2001) 155-160. https://doi.org/10.1254/jjp.85.155.

[26]

L. Olivera-Castillo, G. Grant, N. Kantun-Moreno, et al., A glycosaminoglycan-rich fraction from sea cucumber Isostichopus badionotus has potent anti-inflammatory properties in vitro and in vivo, Nutrients 12 (2020) 1698. https://doi.org/10.3390/nu12061698.

[27]

S.M. Lewis, A. Williams, S.C. Eisenbarth, Structure and function of the immune system in the spleen, Sci. Immunol. 4 (2019). https://doi.org/10.1126/sciimmunol.aau6085.

[28]

W.H. Wu, D.F. Zegarra-Ruiz, G.E. Diehl, Intestinal microbes in autoimmune and inflammatory disease, Front. Immunol. 11 (2020) 597966. https://doi.org/10.3389/fimmu.2020.597966.

[29]

A. Perna, E. Hay, M. Contieri, et al., Adherent-invasive Escherichia coli (AIEC): cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? J. Cell. Physiol. 235 (2020) 5041-5049. https://doi.org/10.1002/jcp.29430.

[30]

D. Kelly, L. Yang, Z. Pei, Gut microbiota, fusobacteria, and colorectal cancer, Diseases 6 (2018) 109. https://doi.org/10.3390/diseases6040109.

[31]

L. Liu, L. Liang, H. Liang, et al., Fusobacterium nucleatum aggravates the progression of colitis by regulating M1 macrophage polarization via AKT2 pathway, Front. Immunol. 10 (2019) 1324. https://doi.org/10.3389/fimmu.2019.01324.

[32]

M.L. Santoru, C. Piras, A. Murgia, et al., Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients, Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-10034-5.

[33]

K. Nomura, D. Ishikawa, K. Okahara, et al., Bacteroidetes species are correlated with disease activity in ulcerative colitis, J. Clin Med. 10 (2021) 1749. https://doi.org/10.3390/jcm10081749.

[34]

X. Sun, Y. Liu, P. Jiang, et al., Interaction of sulfated polysaccharides with intestinal Bacteroidales plays an important role in its biological activities, Int. J. Biol. Macromol. 168 (2021) 496-506. https://doi.org/10.1016/j.ijbiomac.2020.12.024.

[35]

Q. Shang, G. Song, M. Zhang, et al., Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice, J. Funct. Foods 28 (2017) 138-146. https://doi.org/10.1016/j.jff.2016.11.002.

[36]

A. Ibrahim, L.W. Hugerth, L. Hases, et al., Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity, Int. J. Cancer 144 (2019) 3086-3098. https://doi.org/10.1002/ijc.32037.

[37]

A. Lavelle, S. Nancey, J.M. Reimund, et al., Fecal microbiota and bile acids in IBD patients undergoing screening for colorectal cancer, Gut Microbes 14 (2022) 2078620. https://doi.org/10.1080/19490976.2022.2078620.

[38]

L. Jialing, G. Yangyang, Z. Jing, et al., Changes in serum inflammatory cytokine levels and intestinal flora in a self-healing dextran sodium sulfate-induced ulcerative colitis murine model, Life Sci. 263 (2020) 118587. https://doi.org/10.1016/j.lfs.2020.118587.

[39]

M. Wlodarska, C. Luo, R. Kolde, et al., Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation, Cell Host Microbe 22 (2017) 25-37. e6. https://doi.org/10.1016/j.chom.2017.06.007.

[40]

S. Huang, D. Pang, X. Li, et al., A sulfated polysaccharide from Gracilaria Lemaneiformis regulates cholesterol and bile acid metabolism in high-fat diet mice, Food Funct. 10 (2019) 3224-3236. https://doi.org/10.1039/c9fo00263d.

[41]

S. Fiorucci, M. Biagioli, A. Zampella, et al., Bile acids activated receptors regulate innate immunity, Front. Immunol. 9 (2018). https://doi.org/10.3389/fimmu.2018.01853.

[42]

H. Duboc, S. Rajca, D. Rainteau, et al., Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases, Gut 62 (2013) 158-161. https://doi.org/10.1136/gutjnl-2012-302578.

[43]

B. Marine, M.B. Jean, Bile acid derivatives: from old molecules to a new potent therapeutic use: An overview, Curr. Med. Chem. 25 (2018) 3613-3636. https://doi.org/10.2174/0929867325666180309113737.

[44]

S. Dong, M. Zhu, K. Wang, et al., Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism, Pharmacol. Res. 171 (2021) 105767. https://doi.org/10.1016/j.phrs.2021.105767.

[45]

A. Lavelle, H. Sokol, Gut microbiota-derived metabolites as key actors in inflammatory bowel disease, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 223-237. https://doi.org/10.1038/s41575-019-0258-z.

[46]

W. Jia, Y. Li, K. K. Cheung, et al, Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis, Sci. China Life Sci. 67 (2024) 865-878. https://doi.org/10.1007/s11427-023-2353-0.

[47]

M. Vital, T. Rud, S. Rath, et al, Diversity of bacteria exhibiting bile acid-inducible 7α-dehydroxylation genes in the human gut, Comput. Struct. Biotechnol. J. 17 (2019) 1016-1019. https://doi.org/10.1016/j.csbj.2019.07.012.

[48]

C. Zhou, Y. Wang, C. Li, et al., Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids, Microbiol. Spectr. 11 (2023) e0333022. https://doi.org/10.1128/spectrum.03330-22.

Food Science and Human Wellness
Article number: 9250227
Cite this article:
Wu R, Han Z, Wang Z, et al. Sturgeon cartilage-derived chondroitin sulfate exhibited anti-inflammatory activity against dextran sulfate sodium-induced colitis via modification of gut microbiota. Food Science and Human Wellness, 2025, 14(4): 9250227. https://doi.org/10.26599/FSHW.2024.9250227
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return