This study presents novel findings on the potential of phloretin, an apple polyphenol, to enhance the effectiveness of anti-human epidermal growth factor receptor-2 (HER2) antibody therapy in HER2-positive breast cancer patients. Our research reveals that phloretin inhibits type Ⅱ glucose transporter (GLUT2) activity, significantly reducing cancer cell glucose uptake. We confirmed the overexpression of GLUT1 and GLUT2 mRNA in paired human breast tumor tissues, with GLUT2 overexpression associated explicitly with poorer survival rates in breast cancer patients. Treatment with phloretin was observed to increase the interaction between GLUT2 and HER2 proteins, attenuate glycolysis, and enhance the binding affinity of anti-HER2 antibody drugs to target human breast cancer cells. Furthermore, the efficacy of the combination therapy involving phloretin and antibody drugs was reaffirmed in a cell-derived xenograft tumor animal model, particularly in suppressing the growth of trastuzumab-resistant HER2-positive (HER2+) breast cancer. These significant findings suggest that targeting GLUT2 activity with phloretin in combination with anti-HER2 antibody drugs may help mitigate the development of drug-resistant breast cancer, offering valuable insights for enhancing tumor treatment strategies and contributing to developing more effective therapies.
H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer J. Clin. 71 (2021) 209-249. https://doi.org/10.3322/caac.21660.
N. Harbeck, F. Penault-Llorca, J. Cortes, et al., Breast cancer, Nat. Rev. Dis. Primers 5 (2019) 66. https://doi.org/10.1038/s41572-019-0111-2.
C.E. DeSantis, J. Ma, M.M. Gaudet, et al., Breast cancer statistics, 2019, CA: Cancer J. Clin. 69 (2019) 438-451. https://doi.org/10.3322/caac.21583.
D.J. Slamon, W. Godolphin, L.A. Jones, et al., Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer, Science 244 (1989) 707-712. https://doi.org/10.1126/science.2470152.
E.H. Romond, E.A. Perez, J. Bryant, et al., Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer, N. Engl. J. Med. 353 (2005) 1673-1684. https://doi.org/10.1056/NEJMoa052122.
S.H. Giordano, M.A.B. Franzoi, S. Temin, et al., Systemic therapy for advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO guideline update, J. Clin. Oncol. 40 (2022) 2612-2635. https://doi.org/10.1200/JCO.22.00519.
E.A. Perez, E.H. Romond, V.J. Suman, et al., Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831, J. Clin. Oncol. 32 (2014) 3744-3752. https://doi.org/10.1200/JCO.2014.55.5730.
V. Varadan, H. Gilmore, K.L. Miskimen, et al., Immune signatures following single dose trastuzumab predict pathologic response to preoperative trastuzumab and chemotherapy in HER2-positive early breast cancer, Clin. Cancer Res. 22 (2016) 3249-3259. https://doi.org/10.1158/1078-0432.CCR-15-2021.
J. Sperinde, W. Huang, A. Vehtari, et al., p95HER2 methionine 611 carboxy-terminal fragment is predictive of trastuzumab adjuvant treatment benefit in the FinHer Trial, Clin. Cancer Res. 24 (2018) 3046-3052. https://doi.org/10.1158/1078-0432.CCR-17-3250.
R.A. Gatenby, R.J. Gillies, Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4 (2004) 891-899. https://doi.org/10.1038/nrc1478.
T. Yousefi, A.R.G. Pasha, G. Kamrani, et al., Evaluation of fructosamine 3-kinase and glyoxalase 1 activity in normal and breast cancer tissues, Biomedicine 11 (2021) 15-22. https://doi.org/10.37796/2211-8039.1130.
S. Zuo, U. Hellman, P. Lundahl, On the oligomeric state of the red blood cell glucose transporter GLUT1, Biochim. Biophys. Acta 1618 (2003) 8-16. https://doi.org/10.1016/j.bbamem.2003.10.001.
J.W. Kim, Y.K. Kim, Y.H. Ahn, A mechanism of differential expression of GLUT2 in hepatocyte and pancreatic β-cell line, Exp. Mol. Med. 30 (1998) 15-20. https://doi.org/10.1038/emm.1998.2.
D.Z. Gerhart, M.A. Broderius, N.D. Borson, et al., Neurons and microvessels express the brain glucose transporter protein GLUT3, Proc. Natl. Acad. Sci. U.S.A. 89 (1992) 733-737. https://doi.org/10.1073/pnas.89.2.733.
F. Maher, S.J. Vannucci, I.A. Simpson, Glucose transporter isoforms in brain: absence of GLUT3 from the blood-brain barrier, J. Cereb. Blood Flow Metab. 13 (1993) 342-345. https://doi.org/10.1038/jcbfm.1993.43.
B. Cheatham, GLUT4 and company: SNAREing roles in insulin-regulated glucose uptake, Trends Endocrinol. Metab. 11 (2000) 356-361. https://doi.org/10.1016/s1043-2760(00)00308-8.
P.R. Shepherd, E.M. Gibbs, C. Wesslau, et al., Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation, Diabetes 41 (1992) 1360-1365. https://doi.org/10.2337/diab.41.10.1360.
M. Grover-McKay, S.A. Walsh, E.A. Seftor, et al., Role for glucose transporter 1 protein in human breast cancer, Pathol. Oncol. Res. 4 (1998) 115-120. https://doi.org/10.1007/BF02904704.
J. Wang, H. Ji, X. Niu, et al., Sodium-dependent glucose transporter 1 (SGLT1) stabled by HER2 promotes breast cancer cell proliferation by activation of the PI3K/Akt/mTOR signaling pathway in HER2+ breast cancer, Dis. Markers 2020 (2020) 6103542. https://doi.org/10.1155/2020/6103542.
Q. Guo, Y. Qiu, Y. Liu, et al., Cell adhesion molecule CD44v10 promotes stem-like properties in triple-negative breast cancer cells via glucose transporter GLUT1-mediated glycolysis, J. Biol. Chem. 298 (2022) 102588. https://doi.org/10.1016/j.jbc.2022.102588.
K.H. Wu, C.T. Ho, Z.F. Chen, et al., The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter, J. Food Drug Anal. 26 (2018) 221-231. https://doi.org/10.1016/j.jfda.2017.03.009.
S.T. Lin, S.H. Tu, P.S. Yang, et al., Apple polyphenol phloretin inhibits colorectal cancer cell growth via inhibition of the type 2 glucose transporter and activation of p53-mediated signaling, J. Agric. Food Chem. 64 (2016) 6826-6837. https://doi.org/10.1021/acs.jafc.6b02861.
C.H. Wu, Y.S. Ho, C.Y. Tsai, et al., In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type Ⅱ glucose transporter, Int. J. Cancer. 124 (2009) 2210-2219. https://doi.org/10.1002/ijc.24189.
K.C. Yang, C.Y. Tsai, Y.J. Wang, et al., Apple polyphenol phloretin potentiates the anticancer actions of paclitaxel through induction of apoptosis in human Hep G2 cells, Mol. Carcinog. 48 (2009) 420-431. https://doi.org/10.1002/mc.20480.
S.H. Tu, L.C. Chen, Y.S. Ho, An apple a day to prevent cancer formation: reducing cancer risk with flavonoids, J. Food Drug Anal. 25 (2017) 119-124. https://doi.org/10.1016/j.jfda.2016.10.016.
Q. Wu, W. Ba-Alawi, G. Deblois, et al., GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer, Nat. Commun. 11 (2020) 4205. https://doi.org/10.1038/s41467-020-18020-8.
K. Nosaka, K. Makishima, T. Sakabe, et al., Upregulation of glucose and amino acid transporters in micropapillary carcinoma, Histol. Histopathol. 34 (2019) 1009-1014. https://doi.org/10.14670/HH-18-099.
C.Y. Lin, C.H. Lee, Y.H. Chuang, et al., Membrane protein-regulated networks across human cancers, Nat. Commun. 10 (2019) 3131. https://doi.org/10.1038/s41467-019-10920-8.
S. Modi, W. Jacot, T. Yamashita, et al., Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer, N. Engl. J. Med. 387 (2022) 9-20. https://doi.org/10.1056/NEJMoa2203690.
P. Dong, F. Wang, M. Taheri, et al., Long non-coding RNA TMPO-AS1 promotes GLUT1-mediated glycolysis and paclitaxel resistance in endometrial cancer cells by interacting with miR-140 and miR-143, Front. Oncol. 12 (2022) 912935. https://doi.org/10.3389/fonc.2022.912935.
S.C. Wang, M.C. Hung, Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors, Clin. Cancer Res. 15 (2009) 6484-6489. https://doi.org/10.1158/1078-0432.CCR-08-2813.
S.C. Wang, H.C. Lien, W. Xia, et al., Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2, Cancer Cell 6 (2004) 251-261. https://doi.org/10.1016/j.ccr.2004.07.012.
K. Pedersen, P.D. Angelini, S. Laos, et al., A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis, Mol. Cell. Biol. 29 (2009) 3319-3331. https://doi.org/10.1128/MCB.01803-08.
A. Fukushi, H.D. Kim, Y.C. Chang, et al., Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells, Int. J. Mol. Sci. 23 (2022) 10037. https://doi.org/10.3390/ijms231710037.
G. Williamson, Effects of polyphenols on glucose-induced metabolic changes in healthy human subjects and on glucose transporters, Mol. Nutr. Food Res. 66 (2022) e2101113. https://doi.org/10.1002/mnfr.202101113.
X. Hua, X.W. Bi, J.L. Zhao, et al., Trastuzumab plus endocrine therapy or chemotherapy as first-line treatment for patients with hormone receptor-positive and HER2-positive metastatic breast cancer (SYSUCC-002), Clin. Cancer Res. 28 (2022) 637-645. https://doi.org/10.1158/1078-0432.CCR-21-3435.
Z.H. Wang, Z.Q. Zheng, S.C. Jia, et al., Trastuzumab resistance in HER2-positive breast cancer: Mechanisms, emerging biomarkers and targeting agents, Front. Oncol. 12 (2022) 1006429. https://doi.org/10.3389/fonc.2022.1006429.
E.I. Rivas, J. Linares, M. Zwick, et al., Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors, Nat. Commun. 13 (2022) 5310. https://doi.org/10.1038/s41467-022-32782-3.
J.P. Robichaux, Y.Y. Elamin, R.S.K. Vijayan, et al., Pan-cancer landscape and analysis of ERBB2 mutations identifies Poziotinib as a clinically active inhibitor and enhancer of T-DM1 activity, Cancer Cell 36 (2019) 444-57e7. https://doi.org/10.1016/j.ccell.2019.09.001.
A. Derakhshani, Z. Rezaei, H. Safarpour, et al., Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy, J. Cell. Physiol. 235 (2020) 3142-3156. https://doi.org/10.1002/jcp.29216.
A.R. Tan, S.A. Im, A. Mattar, et al., Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDeriCa): a randomised, open-label, multicentre, non-inferiority, phase 3 study, Lancet Oncol. 22 (2021) 85-97. https://doi.org/10.1016/S1470-2045(20)30536-2.
S.M. Swain, M. Shastry, E. Hamilton, Targeting HER2-positive breast cancer: advances and future directions, Nat. Rev. Drug Discov. 22 (2023) 101-126. https://doi.org/10.1038/s41573-022-00579-0.
Y. Ogitani, T. Aida, K. Hagihara, et al., DS-8201a, A novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1, Clin. Cancer Res. 22 (2016) 5097-5108. https://doi.org/10.1158/1078-0432.CCR-15-2822.
Y. Zhang, Y. Lou, J. Wang, et al., Research status and molecular mechanism of the traditional Chinese medicine and antitumor therapy combined strategy based on tumor microenvironment, Front. Immunol. 11 (2020) 609705. https://doi.org/10.3389/fimmu.2020.609705.
C.K. Chang, P.F. Chiu, H.Y. Yang, et al., Targeting colorectal cancer with conjugates of a glucose transporter inhibitor and 5-fluorouracil, J. Med. Chem. 64 (2021) 4450-4461. https://doi.org/10.1021/acs.jmedchem.0c00897.
A. Godoy, V. Ulloa, F. Rodriguez, et al., Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues, J. Cell. Physiol. 207 (2006) 614-627. https://doi.org/10.1002/jcp.20606.
K.H. Chong, Y.J. Chang, W.H. Hsu, et al., Breast cancer with increased drug resistance, invasion ability, and cancer stem cell properties through metabolism reprogramming, Int. J. Mol. Sci. 23 (2022). https://doi.org/10.3390/ijms232112875.
C. Lu, P. Qiao, Y. Sun, et al., Positive regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast cancer, Clin. Transl. Med. 11 (2021) e400. https://doi.org/10.1002/ctm2.400.
F. Chen, J. Chen, L. Yang, et al., Extracellular vesicle-packaged HIF-α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells, Nat. Cell Biol. 21 (2019) 498-510. https://doi.org/10.1038/s41556-019-0299-0.
Y. Qing, L. Dong, L. Gao, et al., R-2-Hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis, Mol. Cell 81 (2021) 922-939 e9. https://doi.org/10.1016/j.molcel.2020.12.026.
Z. Chu, N. Huo, X. Zhu, et al., FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect, Mol. Ther. 29 (2021) 2737-2753. https://doi.org/10.1016/j.ymthe.2021.04.036.
C. Oresajo, T. Stephens, P. D. Hino, et al., Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin, J. Cosmet. Dermatol. 7 (2008) 290-297. https://doi.org/10.1111/j.1473-2165.2008.00408.x.
J.R. Molina, Y. Sun, M. Protopopova, et al., An inhibitor of oxidative phosphorylation exploits cancer vulnerability, Nat. Med. 24 (2018) 1036-1046. https://doi.org/10.1038/s41591-018-0052-4.
S. Roy, A.K. Mondru, T. Chakraborty, et al., Apple polyphenol phloretin complexed with ruthenium is capable of reprogramming the breast cancer microenvironment through modulation of PI3K/Akt/mTOR/VEGF pathways, Toxicol. Appl. Pharmacol. 434 (2022) 115822. https://doi.org/10.1016/j.taap.2021.115822.
B.Z. Kandjani, F.S. Hesari, E. Babaei, Gemini curcumin inhibits 4T1 cancer cell proliferation and modulates the expression of apoptotic and metastatic genes in Balb/c mice model, Pathol. Res. Pract. 243 (2023) 154344. https://doi.org/10.1016/j.prp.2023.154344.