PDF (1.6 MB)
Collect
Submit Manuscript
Article | Open Access

Lactic acid bacteria act as potent interventions in improving hyperuricemia: a review

Qingling WuXiaodong PeiTiantian GaoXiaoling LiuChenghua Wang()
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Hyperuricemia (HUA) is characterized by elevated levels of uric acid (UA) in the bloodstream, resulting from either excessive production or insufficient excretion of UA within the body. If left untreated, progressive or persistent HUA can lead to gout, causing significant harm to human health. Lactic acid bacteria (LAB), generally recognized as safe (GRAS) probiotics, have been shown to alleviate symptoms associated with gastrointestinal disorders such as irritable bowel syndrome and inflammatory bowel disease while supporting overall bodily functions and health. Recently, LAB has emerged as a potentially safe, cost-effective and efficient treatment for HUA. This comprehensive review aims to explore the current literature on the mechanisms through which LAB controls HUA. These mechanisms include suppressing purine metabolism, absorbing purine compounds, modulating microbiota to maintain host global purine homeostasis, reducing intestinal permeability, producing metabolites that alleviate HUA symptoms, promoting the expression of urate excretory proteins and inhibiting the expression of urate reabsorption proteins. The findings presented in this review provide a framework for further investigation into how probiotic LAB can alleviate HUA by influencing UA metabolism and elucidating their underlying action mechanisms.

References

[1]

J. Wu, L. Qiu, X. Cheng, et al., Hyperuricemia and clustering of cardiovascular risk factors in the chinese adult population, Sci. Rep. 7 (2017) 5456-5464. http://doi.org/10.1038/s41598-017-05751-w.

[2]

P. Christen, W.C. Peacock, A.E. Christen, et al., Urate oxidase in primate phylogenesis, Eur. J. Biochem. 12 (1970) 3-5. http://doi.org/10.1111/j.1432-1033.1970.tb00813.x.

[3]

A.C. Keebaugh, J.W. Thomas, The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles, Mol. Biol. Evol. 27 (2010) 1359-1369. http://doi.org/10.1093/molbev/msq022.

[4]

N. Dalbeth, A.L. Gosling, A. Gaffo, et al., Gout, The Lancet 397 (2021) 1843-1855. https://doi.org/10.1016/S0140-6736(21)00569-9.

[5]

M. Dehlin, L. Jacobsson, E. Roddy, Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors, Nat. Rev. Rheumatol. 16 (2020) 380-390. http://doi.org/10.1038/s41584-020-0441-1.

[6]

D. Khanna, J.D. Fitzgerald, P.P. Khanna, et al., 2012 American college of rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia, Arthrit. Care Res. 64 (2012) 1431-1446. http://doi.org/10.1002/acr.21772.

[7]

C. Mattiuzzi, G. Lippi, Recent updates on worldwide gout epidemiology, Clin. Rheumatol. 39 (2020) 1061-1063. http://doi.org/10.1007/s10067-019-04868-9.

[8]

Y. Li, Z. Shen, B. Zhu, et al., Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: a systematic review and meta-analysis, Glob. Health Action 14 (2021) 1874652. http://doi.org/10.1080/16549716.2021.1874652.

[9]

L.K. Stamp, H. Farquhar, Treatment advances in gout, Best. Pract. Res. Cl. Rh. 35 (2021) 101719. http://doi.org/10.1016/j.berh.2021.101719.

[10]

M.H. Pillinger, B.F. Mandell, Therapeutic approaches in the treatment of gout, Semin. Arthritis Rheu. 50 (2020) S24-S30. http://doi.org/10.1016/j.semarthrit.2020.04.010.

[11]

K. Davies, M.A.S. Bukhari, Recent pharmacological advances in the management of gout, Rheumatology 57 (2018) 951-958. http://doi.org/10.1093/rheumatology/kex343.

[12]

S. Mayor, Healthy diet could prevent gout flares, study finds, BMJ 354 (2016) i4464. http://doi.org/10.1136/bmj.i4464.

[13]

A. Danve, S.T. Sehra, T. Neogi, Role of diet in hyperuricemia and gout, Best. Pract. Res. Cl. Rh. 35 (2021) 101723. http://doi.org/10.1016/j.berh.2021.101723.

[14]

L.B. Sorensen, Role of the intestinal tract in the elimination of uric acid, Arthritis Rheum. 8 (1965) 694-706. http://doi.org/10.1002/art.1780080429.

[15]

J. Han, X. Wang, S. Tang, et al., Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota, FASEB J. 34 (2020) 5061-5076. http://doi.org/10.1096/fj.201902597RR.

[16]

T. Pascart, F. Liote, Gout: state of the art after a decade of developments, Rheumatology 58 (2019) 27-44. http://doi.org/10.1093/rheumatology/key002.

[17]

Z. Xiong, Q. Wang, L. Kong, et al., Short communication: improving the activity of bile salt hydrolases in lactobacillus casei based on in silico molecular docking and heterologous expression, J. Dairy Sci. 100 (2017) 975-980. http://doi.org/10.3168/jds.2016-11720.

[18]

Z. Zhang, J. Lv, L. Pan, et al., Roles and applications of probiotic Lactobacillus strains, Appl. Microbiol. Biot. 102 (2018) 8135-8143. http://doi.org/10.1007/s00253-018-9217-9.

[19]

K. Sugiyama, K. Iijima, M. Yoshino, et al., Nicotinamide mononucleotide production by fructophilic lactic acid bacteria, Sci. Rep. 11 (2021) 7662. http://doi.org/10.1038/s41598-021-87361-1.

[20]

A. James, H. Ke, T. Yao, et al., The role of probiotics in purine metabolism, hyperuricemia and gout: mechanisms and interventions, Food Rev. Int. 39 (2023) 261-277. http://doi.org/10.1080/87559129.2021.1904412.

[21]

L.H. Lu, T.T. Liu, X.L. Liu, et al., Screening and identification of purine degrading Lactobacillus fermentum 9-4 from chinese fermented rice-flour noodles, Food Sci. Hum. Wellness 11 (2022) 1402-1408. https://doi.org/10.1016/j.fshw.2022.04.030.

[22]

T. Gao, L. Lu, Q. Wu, et al., Complete genome sequence of Lactobacillus fermentum 9-4, a purine-degrading lactobacillus probiotic isolated from chinese fermented rice-flour noodles, J. Future Foods 3 (2023) 169-174. http://doi.org/10.1016/j.jfutfo.2022.12.008.

[23]

Y. Toyoda, K. Pavelcová, J. Bohatáet al., Identification of two dysfunctional variants in the abcg2 urate transporter associated with pediatric-onset of familial hyperuricemia and early-onset gout, Int. J. Mol. Sci. 4(22) (2021) 1935. http://doi.org/10.3390/ijms22041935.

[24]

T. Bardin, P. Richette, Definition of hyperuricemia and gouty conditions, Curr. Opin. Rheumatol. 26 (2014) 186-191. http://doi.org/10.1097/BOR.0000000000000028.

[25]

J.P. Dewulf, S. Marie, M. Nassogne, Disorders of purine biosynthesis metabolism, Mol. Genet. Metab. 136 (2021) 190-198. http://doi.org/10.1016/j.ymgme.2021.12.016.

[26]

W.L. Nyhan, Disorders of purine and pyrimidine metabolism., Mol. Genet. Metab. 86 (2005) 25-33. http://doi.org/10.1016/j.ymgme.2005.07.027.

[27]

X. Fang, L. Qi, H. Chen, et al., The interaction between dietary fructose and gut microbiota in hyperuricemia and gout, Front. Nutr. 9 (2022) 890730. http://doi.org/10.3389/fnut.2022.890730.

[28]

P. Zhang, H. Sun, X. Cheng, et al., Dietary intake of fructose increases purine de novo synthesis: a crucial mechanism for hyperuricemia, Front. Nutr. 9 (2022) 1045805. http://doi.org/10.3389/fnut.2022.1045805.

[29]

M. Daniel, G. Mariano J, G. Olivia, et al., Prebiotic effect of fructans from agave salmiana on probiotic lactic acid bacteria and in children as a supplement for malnutrition, Food Funct. 13 (2022) 4184-4193. http://doi.org/10.1039/d1fo03852d.

[30]

N. Faria, B. Cardoso, A.L. Duenhas-Berger, et al., Hyperuricemia in patients with hypertension and obesity: prevalence and correlations with metabolic syndrome, J. Hypertens. 39 (2021) E409-E410.

[31]

G. Chalès, P. Richette, Obésité, hyperuricémie et goutte, Revue Du Rhumatisme Monographies 83 (2016) 44-49. http://doi.org/10.1016/j.monrhu.2015.11.002.

[32]

J. Zhao, S. Guo, S.J. Schrodi, et al., Trends in the contribution of genetic susceptibility loci to hyperuricemia and gout and associated novel mechanisms, Front. Cell Dev. Biol. 10 (2022) 937855. http://doi.org/10.3389/fcell.2022.937855.

[33]

C. Ben Salem, R. Slim, N. Fathallah, et al., Drug-induced hyperuricaemia and gout, Rheumatology 56 (2016) 679-688. http://doi.org/10.1093/rheumatology/kew293.

[34]

A.M. Pedley, S.J. Benkovic, A new view into the regulation of purine metabolism: the purinosome, Trends Biochem. Sci. 42 (2017) 141-154. http://doi.org/10.1016/j.tibs.2016.09.009.

[35]

Z. Huang, N. Xie, P. Illes, et al., From purines to purinergic signalling: molecular functions and human diseases, Signal Transduct. Target. Ther. 6 (2021) 162-179. http://doi.org/10.1038/s41392-021-00553-z.

[36]

M. Oda, Y. Satta, O. Takenaka, et al., Loss of urate oxidase activity in hominoids and its evolutionary implications, Mol. Biol. Evol. 19 (2002) 640-653. http://doi.org/10.1093/oxfordjournals.molbev.a004123.

[37]

K. Garbacz, Anticancer activity of lactic acid bacteria, Semin. Cancer Biol. 86 (2022) 356-366. http://doi.org/10.1016/j.semcancer.2021.12.013.

[38]

C. Ren, M.M. Faas, P. de Vos, Disease managing capacities and mechanisms of host effects of lactic acid bacteria, Crit. Rev. Food Sci. Nutr. 61 (2021) 1365-1393. http://doi.org/10.1080/10408398.2020.1758625.

[39]

L. Avonts, L. De Vuyst, Antimicrobial potential of probiotic lactic acid bacteria, Meded. Rijksuniv. Gent. Fak Landbouwkd. Toegep. Biol. Wet. 66 (2001) 543-550.

[40]

D. Amenu Delesa, Overview of anticancer activity of lactic acid bacteria, Int. J. Adv. Res. Biol. Sci. 4 (2017) 166-177. http://doi.org/10.22192/ijarbs.2017.04.12.017.

[41]

H. Yamanaka, A. Taniguchi, H. Tsuboi, et al., Hypouricaemic effects of yoghurt containing lactobacillus gasseri PA-3 in patients with hyperuricaemia and/or gout: a randomised, double-blind, placebo-controlled study, Mod. Rheumatol. 29 (2019) 146-150. http://doi.org/10.1080/14397595.2018.1442183.

[42]

N. Yamada, C. Iwamoto, M. Nakamura, et al., Reducing effect of lactobacillus gasseri PA-3 on the absorption of food-derived, Milk Science 65 (2016) 25-31.

[43]

H. Kano, C. Saito, N. Yamada, et al., Species-dependent patterns of incorporation of purine mononucleotides and nucleosides by lactic acid bacteria, Nucleos. Nucleot. Nucl. 39 (2020) 1440-1448. http://doi.org/10.1080/15257770.2020.1733604.

[44]

N. Yamada, C. Saito, H. Kano, et al., Lactobacillus gasseri PA-3 directly incorporates purine mononucleotides and utilizes them for growth, Nucleos. Nucleot. Nucl. 41 (2020) 221-230. http://doi.org/10.1080/15257770.2020.1815768.

[45]

N. Yamada, C. Saito, Y. Murayama-Chiba, et al., Lactobacillus gasseri PA-3 utilizes the purines gmp and guanosine and decreases their absorption in rats, Nucleosides Nucleotides Nucleic Acids 37 (2018) 307-315. http://doi.org/10.1080/15257770.2018.1454949.

[46]

N. Yamada, C. Saito-Iwamoto, M. Nakamura, et al., Lactobacillus gasseri PA-3 uses the purines imp, inosine and hypoxanthine and reduces their absorption in rats, Microorganisms 5 (2017) 10. http://doi.org/10.3390/microorganisms5010010.

[47]

N. Yamada, C. Iwamoto, H. Kano, et al., Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine, Nucleos. Nucleot. Nucl. 35 (2016) 670-676. http://doi.org/10.1080/15257770.2015.1125000.

[48]

D. Yang, L. Yuan, Screening of serum uric acid-lowering lactic acid bacteria and its effect on hyperuricemia in rat models, Chinese Journal of Microecology 25 (2013) 125-128.

[49]

M. Li, D. Yang, L. Mei, et al., Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats, PLoS ONE 9 (2014) e105577. http://doi.org/10.1371/journal.pone.0105577.

[50]

W. Haina, M. Lu, D. Ying, et al., Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis, Nutrition 62 (2019) 63-73.

[51]

Y. Deng, C. He, Y. Tang, et al., The effect of lactobacillus brevis DM9218 in relievinghigh fructose diet-induced hyperuricemia and the possible mechanisms, Chinese Journal of Microecology 29 (2017) 1387-1390.

[52]

J. Zhu, Y. Li, Z. Chen, et al., Screening of lactic acid bacteria strains with urate-lowering effect from fermented dairy products, J. Food Sci. 87 (2022) 5118-5127. http://doi.org/10.1111/1750-3841.16351.

[53]

M. Hsieh, H. Chen, C. Tsai, Screening and evaluation of purine-nucleoside-degrading lactic acid bacteria isolated from winemaking byproducts in vitro and their uric acid-lowering effects in vivo, Fermentation 7 (2021) 74. http://doi.org/10.3390/fermentation7020074.

[54]

Y. Xiao, C. Zhang, X. Zeng, et al., Microecological treatment of hyperuricemia using lactobacillus from pickles, BMC Microbiol. 20 (2020) 195. http://doi.org/10.1186/s12866-020-01874-9.

[55]

J.M. Rodríguez, M. Garranzo, J. Segura, et al., A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines, Front. Microbiol. 14 (2023) 1111652. http://doi.org/10.3389/fmicb.2023.1111652.

[56]

J. Cao, Q. Liu, H. Hao, et al., Lactobacillus paracasei X11 ameliorates hyperuricemia and modulates gut microbiota in mice, Front. Immunol. 13 (2022) 940228. http://doi.org/10.3389/fimmu.2022.940228.

[57]

X. Zhao, F. Peng, Z. Liu, et al., Lactic acid bacteria with anti-hyperuricemia ability: screening in vitro and evaluating in mice, Food Biosci. 52 (2023) 102411. http://doi.org/10.1016/j.fbio.2023.102411.

[58]

M. Meraj, Khalil-ur-Rahman, A. Jamil, et al., Bacillus subtilis improvement through UV and chemical mutagenesis for indigenously hyperproduced urate oxidase, Pak. J. Life. Soc. Sci. 10 (2012) 123-129.

[59]

S.K. Abdullah, M.T. Flayyih, Evaluation the uricase produced from different clinical isolates of pseudomonas aeruginosa by plate assay methods, World. J. Exp. Biosci. 3 (2015) 26-29.

[60]

I. Handayani, T. Utami, C. Hidayat, et al., Screening of lactic acid bacteria producing uricase and stability assessment in simulated gastrointestinal conditions, Int. Food Res. J. 25 (2018) 1661-1667.

[61]

I. Handayani, T. Utami, C. Hidayat, et al., Enhancement of an intracellular uricase produce by L. Plantarum Dad-13 which has stability in gastrointestinal system, Microbiol. Res. J. Int. 12 (2017) 202-209. http://doi.org/10.3923/jm.2017.202.209.

[62]

Y. Wu, Z. Ye, P. Feng, et al., Limosilactobacillus fermentum JL-3 isolated from “jiangshui” ameliorates hyperuricemia by degrading uric acid, Gut Microbes. 13 (2021) 1-18. http://doi.org/10.1080/19490976.2021.1897211.

[63]

S. Zhao, P. Feng, X. Hu, et al., Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid, iScience 25 (2022) 105198. http://doi.org/10.1016/j.isci.2022.105198.

[64]

M. Kilstrup, K. Hammer, P. R. Jensen, et al., Nucleotide metabolism and its control in lactic acid bacteria, FEMS Microbiol. Rev. 29 (2005) 555-590. http://doi.org/10.1016/j.femsre.2005.04.006.

[65]

X. Zhang, H. Guan, Y. Dong, et al., Degrading activity of creatinine and uric acid of Lactobacillus plantarum ZXH-1304s, Science and Technology of Food Industry 40 (2019) 174-177. http://doi.org/10.13386/j.issn1002-0306.2019.11.029.

[66]

N. Anzai, Y. Kanai, H. Endou, New insights into renal transport of urate, Curr. Opin. Rheumatol. 19 (2007) 151-157. http://doi.org/10.1097/bor.0b013e328032781a.

[67]

Z. Wang, T. Cui, X. Ci, et al., The effect of polymorphism of uric acid transporters on uric acid transport, J. Nephrol. 32 (2019) 177-187. http://doi.org/10.1007/s40620-018-0546-7.

[68]

W.H. Dantzler, Comparative aspects of renal urate transport, Kidney Int. 49 (1996) 1549-1551. http://doi.org/10.1038/ki.1996.222.

[69]

N. Anzai, P. Jutabha, S. Amonpatumrat-Takahashi, et al., Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies, Clin. Exp. Nephrol. 16 (2012) 89-95. http://doi.org/10.1007/s10157-011-0532-z.

[70]

R. Eckenstaler, R.A. Benndorf, The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout—an update, Int. J. Mol. Sci. 22 (2021) 6678. http://doi.org/10.3390/ijms22136678.

[71]

K. Ichida, H. Matsuo, T. Takada, et al., Decreased extra-renal urate excretion is a common cause of hyperuricemia, Nat. Commun. 3 (2012). http://doi.org/10.1038/ncomms1756.

[72]

A. Hosomi, T. Nakanishi, T. Fujita, et al., Extra-renal elimination of uric acid via intestinal efflux transporter bcrp/ABCG2, PLoS ONE 7 (2012) e30456. http://doi.org/10.1371/journal.pone.0030456.

[73]

I. Pavlova, V. Yordanova, S. Danova, et al., Effect of treatment with enrofloxacin and Lactobacillus probiotics on ABCB1, ABCC2 and ABCG2 mrna expression in poultry, Bulg. J. Vet. Med. 21 (2018) 451-460. http://doi.org/10.15547/bjvm.1082.

[74]

E. Angelakis, D. Bastelica, A. Ben Amara, et al., An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice, Microb. Pathogenesis. 52 (2012) 61-68. http://doi.org/10.1016/j.micpath.2011.10.004.

[75]

Y. Yao, X. Cai, W. Fei, et al., The role of short-chain fatty acids in immunity, inflammation and metabolism, Crit. Rev. Food Sci. Nutr. 62 (2022) 1-12. http://doi.org/10.1080/10408398.2020.1854675.

[76]

M.C. Cleophas, T.O. Crisan, L.A. Joosten, Factors modulating the inflammatory response in acute gouty arthritis, Curr. Opin. Rheumatol. 29 (2017) 163-170. http://doi.org/10.1097/BOR.0000000000000366.

[77]

A.K. Singh, M. Haque, K. O’Sullivan, et al., Suppression of monosodium urate crystal-induced inflammation by inhibiting TGF-β-activated kinase 1- dependent signaling: role of the ubiquitin proteasome system, Cell. Mol. Immunol. 18 (2021) 162-170. http://doi.org/10.1038/s41423-019-0284-3.

[78]

A. Pessione, G. Lo Bianco, E. Mangiapane, et al., Characterization of potentially probiotic lactic acid bacteria isolated from olives: evaluation of short chain fatty acids production and analysis of the extracellular proteome, Food Res. Int. 67 (2015) 247-254. http://doi.org/https://doi.org/10.1016/j.foodres.2014.11.029.

[79]

C. Ni, X. Li, L. Wang, et al., Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism, Food Funct. 12 (2021) 7054-7067. http://doi.org/10.1039/D1FO00198A.

[80]

J. Hu, Q. Hou, W. Zheng, et al., Lactobacillus gasseri LA39 promotes hepatic primary bile acid biosynthesis and intestinal secondary bile acid biotransformation, J. Zhejiang Univ.-Sc. B 24 (2023) 734-748. http://doi.org/10.1631/jzus.B2200439.

[81]

T. Kanemitsu, Y. Tsurudome, N. Kusunose, et al., Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARα, J. Biol. Chem. 292 (2017) 21397-21406. http://doi.org/10.1074/jbc.M117.791285.

[82]

K. Dziedzic, A. Szwengiel, D. Górecka, et al., Effect of wheat dietary fiber particle size during digestion in vitro on bile acid, faecal bacteria and short-chain fatty acid content, Plant Food. Hum. Nutr. 71 (2016) 151-157. http://doi.org/10.1007/s11130-016-0537-6.

[83]

A. Wahlstrom, S.I. Sayin, H.U. Marschall, et al., Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism, Cell Metab. 24 (2016) 41-50. http://doi.org/10.1016/j.cmet.2016.05.005.

[84]

S.H. Zeisel, K.C. Klatt, M.A. Caudill, Choline, Adv. Nutr. 9 (2018) 58-60. http://doi.org/10.1093/advances/nmx004.

[85]

M. Stephenson, E. Rowatt, K. Harrison, The production of acetylcholine by a strain of Lactobacillus plantarum with an addendum on the isolation of acetylcholine as a salt of hexanitrodiphenylamine, J. Gen. Appl. Microbiol. 1 (1947) 279-298.

[86]

K. Nakamura, S. Okitsu, R. Ishida, et al., Identification of natural lactoylcholine in lactic acid bacteria-fermented food, Food Chem. 201 (2016) 185-189. http://doi.org/10.1016/j.foodchem.2016.01.055.

[87]

T.E. Lehnen, M.R. Da Silva, A. Camacho, et al., A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism, J. Int. Soc. Sport. Nutr. 12 (2015). http://doi.org/10.1186/s12970-015-0097-4.

[88]

N. Liu, Q. Sun, H. Xu, et al., Hyperuricemia induces lipid disturbances mediated by LPCAT3 upregulation in the liver, FASEB J. 34 (2020) 13474-13493. http://doi.org/10.1096/fj.202000950R.

[89]

H. Gao, B. Yang, C. Stanton, et al., Characteristics of bifidobacterial conjugated fatty acid and hydroxy fatty acid production and its potential application in fermented milk, LWT-Food Sci. Technol. 120 (2020) 108940. http://doi.org/10.1016/j.lwt.2019.108940.

[90]

Y. Zhang, H. Qiu, Folate, vitamin B6 and vitamin B12 intake in relation to hyperuricemia, J. Clin. Med. 7 (2018) 210. http://doi.org/10.3390/jcm7080210.

[91]

A.S. Lewis, L. Murphy, C. McCalla, et al., Inhibition of mammalian xanthine oxidase by folate compounds and amethopterin, J. Biol. Chem. 259 (1984) 12-15.

[92]

V. Capozzi, P. Russo, M.T. Dueñas, et al., Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products, Appl. Microbiol. Biot. 96 (2012) 1383-1394. http://doi.org/10.1007/s00253-012-4440-2.

[93]

J.H. Mulligan, E.E. Snell, Transport and metabolism of vitamin B6 in lactic acid bacteria, J. Biol. Chem. 252 (1977) 835-839.

[94]

R. Kaprasob, O. Kerdchoechuen, N. Laohakunjit, et al., B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum, Process Biochem. 70 (2018) 9-19. http://doi.org/10.1016/j.procbio.2018.04.009.

[95]

M. Masuda, M. Ide, H. Utsumi, et al., Production potency of folate, vitamin B12, and thiamine by lactic acid bacteria isolated from japanese pickles, Biosci. Biotech. Bioch. 76 (2014) 2061-2067. http://doi.org/10.1271/bbb.120414.

[96]

J.G. LeBlanc, R. Levit, G. Savoy De Giori, et al., Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases, Appl. Microbiol. Biot. 104 (2020) 3331-3337. http://doi.org/10.1007/s00253-020-10487-1.

[97]

D. Ngo, T.S. Vo, An updated review on pharmaceutical properties of gamma-aminobutyric acid, Molecules 24 (2019) 2678. http://doi.org/10.3390/molecules24152678.

[98]

Y. Pyo, J. Hwang, K. Seong, Hypouricemic and antioxidant effects of soy vinegar extracts in hyperuricemic mice, J. Med. Food 21 (2018) 1299-1305. http://doi.org/10.1089/jmf.2018.4181.

[99]

H. Huang, T. Hsu, B. Lin, Gamma-aminobutyric acid decreases macrophages infiltration and suppresses inflammatory responses in renal injury, J. Funct. Foods 60 (2019) 103419. http://doi.org/10.1016/j.jff.2019.103419.

[100]

S. Pannerchelvan, L. Rios-Solis, W.F. Faizal, et al., Strategies for improvement of gamma-aminobutyric acid (GABA) biosynthesis via lactic acid bacteria (LAB) fermentation, Food Funct. 14 (2023) 3929-3948. http://doi.org/10.1039/d2fo03936b.

[101]

Y. Cui, K. Miao, S. Niyaphorn, et al., Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review, Int. J. Mol. Sci. 21 (2020) 995. http://doi.org/10.3390/ijms21030995.

[102]

Z. Guo, J. Zhang, Z. Wang, et al., Intestinal microbiota distinguish gout patients from healthy humans, Sci. Rep. 6 (2016) 20602. http://doi.org/10.1038/srep20602.

[103]

X. Liu, Q. Lv, H. Ren, et al., The altered gut microbiota of high-purineinduced hyperuricemia rats and its correlation with hyperuricemia, Peerj 8 (2020) e8664. http://doi.org/10.7717/peerj.8664.

[104]

Q. Lv, J. Zhou, C. Wang, et al., A dynamics association study of gut barrier and microbiota in hyperuricemia, Front. Microbiol. 14 (2023). http://doi.org/10.3389/fmicb.2023.1287468.

[105]

Y. Chu, S. Sun, Y. Huang, et al., Metagenomic analysis revealed the potential role of gut microbiome in gout, npj Biofilms Microbiomes 7 (2021) 66. http://doi.org/10.1038/s41522-021-00235-2.

[106]

S. Lin, T. Zhang, L. Zhu, et al., Characteristic dysbiosis in gout and the impact of a uric acid-lowering treatment, febuxostat on the gut microbiota, J. Genet. Genomics. 48 (2021) 781-791. http://doi.org/10.1016/j.jgg.2021.06.009.

[107]

Z. Wang, Y. Li, W. Liao, et al., Gut microbiota remodeling: a promising therapeutic strategy to confront hyperuricemia and gout, Front. Cell. Infect. Mi. 12 (2022). http://doi.org/10.3389/fcimb.2022.935723.

[108]

K. Kasahara, R.L. Kerby, Q. Zhang, et al., Gut bacterial metabolism contributes to host global purine homeostasis, Cell Host Microbe 31 (2023) 1038-1053. http://doi.org/10.1016/j.chom.2023.05.011.

[109]

Y. Lee, P. Werlinger, J. Suh, et al., Potential probiotic Lacticaseibacillus paracasei MJM60396 prevents hyperuricemia in a multiple way by absorbing purine, suppressing xanthine oxidase and regulating urate excretion in mice, Microorganisms 10 (2022) 851. http://doi.org/10.3390/microorganisms10050851.

[110]

B. Xu, S. Liang, J. Zhao, et al., Bifidobacterium animalis subsp. Lactis XLTG11 improves antibiotic-related diarrhea by alleviating inflammation, enhancing intestinal barrier function and regulating intestinal flora, Food Funct. 13 (2022) 6404-6418. http://doi.org/10.1039/d1fo04305f.

[111]

H. Zhao, X. Chen, F. Meng, et al., Ameliorative effect of Lacticaseibacillus rhamnosus FMB14 from chinese yogurt on hyperuricemia, Food Sci. Hum. Wellness 12 (2023) 1379-1390. http://doi.org/10.1016/j.fshw.2022.10.031.

[112]

J. Cao, Y. Bu, H. Hao, et al., Effect and potential mechanism of Lactobacillus plantarum Q7 on hyperuricemia in vitro and in vivo, Front. Nutr. 9 (2022) 954545. http://doi.org/10.3389/fnut.2022.954545.

[113]

M. Li, X. Wu, Z. Guo, et al., Lactiplantibacillus plantarum enables blood urate control in mice through degradation of nucleosides in gastrointestinal tract, Microbiome 11 (2023) 153. http://doi.org/10.1186/s40168-023-01605-y.

[114]

Y. Li, J. Zhu, G. Lin, et al., Probiotic effects of Lacticaseibacillus rhamnosus 1155 and limosilactobacillus fermentum 2644 on hyperuricemic rats, Front. Nutr. 9 (2022) 993951. http://doi.org/10.3389/fnut.2022.993951.

[115]

Y. Meng, Y. Hu, M. Wei, et al., Amelioration of hyperuricemia by Lactobacillus acidophilus F02 with uric acid-lowering ability via modulation of NLRP3 inflammasome and gut microbiota homeostasis, J. Funct. Foods 111 (2023) 105903. http://doi.org/10.1016/j.jff.2023.105903.

[116]

I. Mortada, Hyperuricemia, type 2 diabetes mellitus, and hypertension: an emerging association, Curr. Hypertens. Rep. 19 (2017) 69. http://doi.org/10.1007/s11906-017-0770-x.

[117]

M. Kuwabara, Hyperuricemia, cardiovascular disease, and hypertension, Pulse 3 (2016) 242-252. http://doi.org/10.1159/000443769.

[118]

C. Borghi, E. Agabiti-Rosei, R.J. Johnson, et al., Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease, Eur. J. Intern. Med. 80 (2020) 1-11. http://doi.org/10.1016/j.ejim.2020.07.006.

[119]

A.B. Vargas-Santos, T. Neogi, Management of gout and hyperuricemia in CKD, Am. J. Kidney Dis. 70 (2017) 422-439. http://doi.org/10.1053/j.ajkd.2017.01.055.

[120]

J.G. Puig, M.A. Martínez, Hyperuricemia, gout and the metabolic syndrome, Curr. Opin. Rheumatol. 20 (2008) 187-191. http://doi.org/10.1097/BOR.0b013e3282f4b1ed.

[121]

M.Y. Chen, A.P. Wang, J.W. Wang, et al., Coexistence of hyper-uricaemia and low urinary uric acid excretion further increases risk of chronic kidney disease in type 2 diabetes, Diabetes Metab. 45 (2019) 557-563. http://doi.org/10.1016/j.diabet.2019.03.001.

[122]

M. Kuwabara, R. Kuwabara, I. Hisatome, et al., “Metabolically healthy” obesity and hyperuricemia increase risk for hypertension and diabetes: 5-year Japanese cohort study, Obesity 25 (2017) 1997-2008. http://doi.org/10.1002/oby.22000.

[123]

G.S. Filippatos, M.I. Ahmed, J.D. Gladden, et al., Hyperuricaemia, chronic kidney disease, and outcomes in heart failure: potential mechanistic insights from epidemiological data, Eur. Heart J. 32 (2011) 712-720. http://doi.org/10.1093/eurheartj/ehq473.

[124]

Y. Cheng, Y. Li, Hyperuricemia, Hypertension 71 (2018) 66-67. http://doi.org/10.1161/HYPERTENSIONAHA.117.10443.

[125]

H. Wang, H. Zhang, L. Sun, et al., Roles of hyperuricemia in metabolic syndrome and cardiac-kidney-vascular system diseases, Am. J. Transl. Res. 10 (2018) 2749-2763.

[126]

R.J. Johnson, G.L. Bakris, C. Borghi, et al., Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation, Am. J. Kidney Dis. 71 (2018) 851-865. http://doi.org/10.1053/j.ajkd.2017.12.009.

[127]

G.E. Thottam, S. Krasnokutsky, M.H. Pillinger, Gout and metabolic syndrome: a tangled web, Curr. Rheumatol. Rep. 19 (2017) 60. http://doi.org/10.1007/s11926-017-0688-y.

[128]

G. Wang, Q. Si, S. Yang, et al., Lactic acid bacteria reduce diabetes symptoms in mice by alleviating gut microbiota dysbiosis and inflammation in different manners, Food Funct. 11 (2020) 5898-5914. http://doi.org/10.1039/c9fo02761k.

[129]

H. Huang, K. Li, Y. Lee, et al., Preventive effects of lactobacillus mixture against chronic kidney disease progression through enhancement of beneficial bacteria and downregulation of gut-derived uremic toxins, J. Agr. Food Chem. 69 (2021) 7353-7366. http://doi.org/10.1021/acs.jafc.1c01547.

[130]

X. Qiu, Q. Wu, W. Li, et al., Effects of Lactobacillus supplementation on glycemic and lipid indices in overweight or obese adults: a systematic review and meta-analysis, Clin. Nutr. 41 (2022) 1787-1797. http://doi.org/10.1016/j.clnu.2022.06.030.

[131]

D.D. de Assis Gadelha, J.L. de Brito Alves, P.C.T. Da Costa, et al., Lactobacillus group and arterial hypertension: a broad review on effects and proposed mechanisms, Crit. Rev. Food Sci. Nutr. 64(12) (2022) 1-22. http://doi.org/10.1080/10408398.2022.2136618.

Food Science and Human Wellness
Article number: 9250255
Cite this article:
Wu Q, Pei X, Gao T, et al. Lactic acid bacteria act as potent interventions in improving hyperuricemia: a review. Food Science and Human Wellness, 2025, 14(4): 9250255. https://doi.org/10.26599/FSHW.2024.9250255
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return