PDF (32 MB)
Collect
Submit Manuscript
Research Article | Open Access

Gastrointestinal distribution and in vitro-microbial biotransformation of chlorogenic acid

Yunhui Zhanga,1Bowei Zhanga,1Xiaoxia LiuaXiang LiaFan WeiaLingda ZhaoaHuan LvaXudong WangbJin WangaJing WuaYan ZhangaShuo Wanga()
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China

1 These authors contributed equally to this work.

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Chlorogenic acid (CGA), as a polyphenol abundant in daily diet, exerted various intestinal functions. However, the material basis of its intestinal bioactivities was still unclear. Our study investigated the gastrointestinal distribution of CGA using ultra high performance liquid chromatography-tandem mass spectrum (UPLC-MS/MS) and explored the main drivers leading to different metabolic fates of the metabolites. After oral administration of 50 mg/kg bw CGA to mice, CGA and sulfated metabolites were mainly determined in small intestine. Protocatechuic acid, catechol, and 3-hydroxyphenylpropionic acid were found in copious amounts in large intestine and feces. Besides, caffeic acid existed in the entire intestine and feces. In the in vitro mice/human fecal fermentation of CGA, the production of metabolites was consistent with that in the colon, indicating that microorganisms might lead to the difference in the gastrointestinal distribution of CGA metabolites. Moreover, CGA, 3-hydroxyphenylpropionic acid, protocatechuic acid, catechol, and caffeic acid reduced proinflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-‍α (TNF-‍α)) and increased mucin (Muc2) and tight junction (occludin) mRNA in LPS-induced Caco-2/HT-29 MTX co-culture cells. In conclusion, the biotransformation of CGA in different gastrointestinal tracts varied significantly, and its metabolites could partially support its intestinal bioactivities.

Electronic Supplementary Material

Download File(s)
fshw-14-7-9250312_ESM.docx (976 KB)

References

[1]

L. Zeng, R. Xiang, C. Fu, et al., The regulatory effect of chlorogenic acid on gut-brain function and its mechanism: A systematic review, Biomed. Pharmacother. 149 (2022) 112831. https://doi.org/10.1016/j.biopha.2022.112831.

[2]

T. Merono, G. Peron, G. Gargari, et al., The relevance of urolithins-based metabotyping for assessing the effects of a polyphenol-rich dietary intervention on intestinal permeability: A post-hoc analysis of the MaPLE trial, Food Res. Int. 159 (2022) 111632. https://doi.org/10.1016/j.foodres.2022.111632.

[3]

A.W.C. Man, Y. Zhou, N. Xia, et al., Involvement of gut microbiota, microbial metabolites and interaction with polyphenol in host immunometabolism, Nutrients 12 (2020) 3054. https://doi.org/10.3390/nu12103054.

[4]

J.A. Villa-Rodriguez, I. Ifie, G.A. Gonzalez-Aguilar, et al., The gastrointestinal tract as prime site for cardiometabolic protection by dietary polyphenols, Adv. Nutr. 10 (2019) 999-1011. https://doi.org/10.1093/advances/nmz038.

[5]

Y. Xiao, K. Li, J. Bian, et al., Urolithin a attenuates diabetes-associated cognitive impairment by ameliorating intestinal barrier dysfunction via N-glycan biosynthesis pathway, Mol. Nutr. Food Res. 66 (2022) 2100863. https://doi.org/10.1002/mnfr.202100863.

[6]

B.W. Zhang, Y.H. Zhang, X. L. Xing, et al., Health benefits of dietary polyphenols: Insight into interindividual variability in absorption and metabolism, Curr. Opin. Food Sci. 48 (2022) 100941. https://doi.org/10.1016/j.cofs.2022.100941.

[7]

H.J. Lu, Z.M. Tian, Y.Y. Cui, et al., Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions, Compr. Rev. Food Sci. F. 19 (2020) 3130-3158. https://doi.org/10.1111/1541-4337.12620.

[8]

M.N. Clifford, I.B. Jaganath, I.A. Ludwig, et al., Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity, Nat. Prod. Rep. 34 (2017) 1391-1421. https://doi.org/10.1039/c7np00030h.

[9]

X. Zhou, B. Zhang, X. Zhao, et al., Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis, Food Funct. 12 (2021) 5637-5649. https://doi.org/10.1039/d0fo03199b.

[10]

X. Zhou, B. Zhang, X. Zhao, et al., Chlorogenic acid prevents hyperuricemia nephropathy via regulating TMAO-related gut microbes and inhibiting the PI3K/AKT/mTOR pathway, J. Agric. Food Chem. 70 (2022) 10182-10193. https://doi.org/10.1021/acs.jafc.2c03099.

[11]

P. Mena, L. Bresciani, M. Tassotti, et al., Effect of different patterns of consumption of coffee and a cocoa-based product containing coffee on the nutrikinetics and urinary excretion of phenolic compounds, Am. J. Clin. Nutr. 114 (2021) 2107-2118. https://doi.org/10.1093/ajcn/nqab299.

[12]

G. Williamson, Possible effects of dietary polyphenols on sugar absorption and digestion, Mol. Nutr. Food Res. 57 (2013) 48-57. https://doi.org/10.1002/mnfr.201200511.

[13]

A. Shi, T. Li, Y. Zheng, et al., Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1, Front. Pharmacol. 12 (2021) 693048. https://doi.org/10.3389/fphar.2021.693048.

[14]

B.J. Peng, Q. Zhu, Y.L. Zhong, et al., Chlorogenic acid maintains glucose homeostasis through modulating the expression of SGLT-1, GLUT-2, and PLG in different intestinal segments of sprague-dawley rats fed a high-fat diet, Biomed. Environ. Sci. 28 (2015) 894-903. https://doi.org/10.3967/bes2015.123.

[15]

J. D. Schulzke, C. Bojarski, S. Zeissig, et al., Disrupted barrier function through epithelial cell apoptosis, Ann. N.Y. Acad. Sci. 1072 (2006) 288-299. https://doi.org/10.1196/annals.1326.027.

[16]

Z. Zhang, X. Wu, S. Cao, et al., Chlorogenic acid ameliorates experimental colitis by promoting growth of Akkermansia in mice, Nutrients 9 (2017). https://doi.org/10.3390/nu9070677.

[17]

Y. Zhao, C. Wang, T. Yang, et al., Chlorogenic acid alleviates chronic stress-induced intestinal damage by inhibiting the P38MAPK/NF-κB pathway, J. Agric. Food Chem. 71 (2023) 9381-9390. https://doi.org/10.1021/acs.jafc.3c00953.

[18]

J.H. Zeng, D.Q. Zhang, X.Y. Wan, et al., Chlorogenic acid suppresses miR-155 and ameliorates ulcerative colitis through the NF-κB/NLRP3 inflammasome pathway, Mol. Nutr. Food Res. 64 (2020) e2000452. https://doi.org/10.1002/mnfr.202000452.

[19]

Z. Wang, K. L. Lam, J. Hu, et al., Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice, Food Sci. Nutr. 7 (2019) 579-588. https://doi.org/10.1002/fsn3.868.

[20]

J. Song, N. Zhou, W. Ma, et al., Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior, Food Funct. 10 (2019) 2947-2957. https://doi.org/10.1039/c8fo02599a.

[21]

A. Stalmach, H. Steiling, G. Williamson, et al., Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy, Arch. Biochem. Biophys. 501 (2010) 98-105. https://doi.org/10.1016/j.abb.2010.03.005.

[22]

A. Stalmach, W. Mullen, D. Barron, et al., Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption, Drug Metab. Dispos. 37 (2009) 1749-1758. https://doi.org/10.1124/dmd.109.028019.

[23]

A.R. Rechner, M.A. Smith, G. Kuhnle, et al., Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products, Free Radic. Biol. Med. 36 (2004) 212-25. https://doi.org/10.1016/j.freeradbiomed.2003.09.022.

[24]

C. Ma, N. Sheng, Y. Li, et al., A comprehensive perspective on the disposition, metabolism, and pharmacokinetics of representative multi-components of Dengzhan Shengmai in rats with chronic cerebral hypoperfusion after oral administration, J. Ethnopharmacol. 307 (2023) 116212. https://doi.org/10.1016/j.jep.2023.116212.

[25]

G. Balaj, Z. Tamanai-Shacoori, D. Olivier-Jimenez, et al., An insight into an intriguing oxidative biotransformation pathway of 5-O-caffeoylquinic acid by a gut bacterium, Food Funct. 13 (2022) 6195-6204. https://doi.org/10.1039/d1fo04304h.

[26]

C. E. Mills, X. Tzounis, M. J. Oruna-Concha, et al., In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth, Br. J. Nutr. 113 (2015) 1220-7. https://doi.org/10.1017/S0007114514003948.

[27]

T. Erk, G. Williamson, M. Renouf, et al., Dose-dependent absorption of chlorogenic acids in the small intestine assessed by coffee consumption in ileostomists, Mol. Nutr. Food Res. 56 (2012) 1488-1500. https://doi.org/10.1002/mnfr.201200222.

[28]

R. Fumeaux, C. Menozzi-Smarrito, A. Stalmach, et al., First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption, Org. Biomol. Chem. 8 (2010) 5199-5211. https://doi.org/10.1039/c0ob00137f.

[29]

T. K. Ren, Y. N. Wang, C. H. Wang, et al., Isolation and identification of human metabolites from a novel anti-tumor candidate drug 5-chlorogenic acid injection by HPLC-HRMS/MSn and HPLC-SPE-NMR, Anal. Bioanal. Chem. 409 (2017) 7035-7048. https://doi.org/10.1007/s00216-017-0657-3.

[30]

B. Zhang, Y. Xu, H. Lv, et al., Intestinal pharmacokinetics of resveratrol and regulatory effects of resveratrol metabolites on gut barrier and gut microbiota, Food Chem. 357 (2021) 129532. https://doi.org/10.1016/j.foodchem.2021.129532.

[31]

X. Liu, B. Zhang, Y. Zhang, et al., 2’-Fucosyllactose promotes colonization of Akkermansia muciniphila and prevents colitis in vitro and in mice, J. Agric. Food Chem. 72 (2024) 4765-4776. https://doi.org/10.1021/acs.jafc.3c08305.

[32]

B. Zhang, Y. Zhang, X. Liu, et al., Distinctive anti-inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice, Food Chem. 400 (2022) 133904. https://doi.org/10.1016/j.foodchem.2022.133904.

[33]

A. Ali, Y.M. Bashmil, J.J. Cottrell, et al., LC-MS/MS-QTOF screening and identification of phenolic compounds from australian grown herbs and their antioxidant potential, Antioxidants-Basel 10 (2021) 1770. https://doi.org/10.3390/antiox10111770.

[34]

L. Poquet, M.N. Clifford, G. Williamson, Investigation of the metabolic fate of dihydrocaffeic acid, Biochem. Pharmacol. 75 (2008) 1218-1229. https://doi.org/10.1016/j.bcp.2007.11.009.

[35]

W. Chen, D. Wang, L. S. Wang, et al., Pharmacokinetics of protocatechuic acid in mouse and its quantification in human plasma using LC-tandem mass spectrometry, J. Chromatogr. B 908 (2012) 39-44. https://doi.org/10.1016/j.jchromb.2012.09.032.

[36]

G.H. Bao, J. Barasch, J. Xu, et al., Purification and structural characterization of “simple catechol”, the NGAL-siderocalin siderophore in human urine, AdvancesRsc 5 (2015) 28527-28535. https://doi.org/10.1039/c5ra02509e.

[37]

H. Rasmussen, K.H. Mogensen, M.D. Jeppesen, et al., 4-Hydroxybenzoic acid from hydrothermal pretreatment of oil palm empty fruit bunches: its origin and influence on biomass conversion, Biomass Bioenergy 93 (2016) 209-216. https://doi.org/10.1016/j.biombioe.2016.07.024.

[38]

C. Scapolla, G. Cangemi, S. Barco, et al., Identification and structural characterization by LC-ESI-IONTRAP and LC-ESI-TOF of some metabolic conjugation products of homovanillic acid in urine of neuroblastoma patients, J. Mass Spectrom. 47 (2012) 816-824. https://doi.org/10.1002/jms.3016.

[39]

Y. Yan, C. Fu, X. Cui, et al., Metabolic profile and underlying antioxidant improvement of Ziziphi Spinosae Folium by human intestinal bacteria, Food Chem. 320 (2020) 126651. https://doi.org/10.1016/j.foodchem.2020.126651.

[40]

M.A.E. Ahmed, M. Mohanad, A.A.E. Ahmed, et al., Mechanistic insights into the protective effects of chlorogenic acid against indomethacin-induced gastric ulcer in rats: Modulation of the cross talk between autophagy and apoptosis signaling, Life Sci. 275 (2021) 119370. https://doi.org/10.1016/j.lfs.2021.119370.

[41]

L.Q. Song, T. Wu, L. Zhang, et al., Chlorogenic acid improves the intestinal barrier by relieving endoplasmic reticulum stress and inhibiting ROCK/MLCK signaling pathways, Food Funct. 13 (2022) 4562-4575. https://doi.org/10.1039/d1fo02662c.

[42]

S.Q. Zhang, D. Tian, C.Y. Hu, et al., Chlorogenic acid ameliorates high-fat and high-fructose diet-induced cognitive impairment via mediating the microbiota-gut-brain axis, J. Agr. Food Chem. 70 (2022) 2600-2615. https://doi.org/10.1021/acs.jafc.1c07479.

[43]

A.K. Singh, H.K. Rana, V. Singh, et al., Evaluation of antidiabetic activity of dietary phenolic compound chlorogenic acid in streptozotocin induced diabetic rats: Molecular docking, molecular dynamics, in silico toxicity, in vitro and in vivo studies, Comput. Biol. Med. 134 (2021) 104462. https://doi.org/10.1016/j.compbiomed.2021.104462.

[44]

I. Ahmad, A. M. Syakfanaya, A. Azminah, et al., Optimization of betainesorbitol natural deep eutectic solvent-based ultrasound-assisted extraction and pancreatic lipase inhibitory activity of chlorogenic acid and caffeine content from robusta green coffee beans, Heliyon 7 (2021) e07702. https://doi.org/10.1016/j.heliyon.2021.e07702..

[45]

A. Cattivelli, A. Conte, D. Tagliazucchi, Quercetins, chlorogenic acids and their colon metabolites inhibit colon cancer cell proliferation at physiologically relevant concentrations, Int. J. Mol. Sci. 24 (2023) 12265. https://doi.org/10.3390/ijms241512265.

[46]

L. Wang, C.W. Bi, H.J. Cai, et al., The therapeutic effect of chlorogenic acid against staphylococcus aureus infection through sortase a inhibition, Front. Microbiol. 6 (2015) 1031. https://doi.org/10.3389/fmicb.2015.01031.

[47]

M.R. Olthof, P.C. Hollman, M.B. Katan, Chlorogenic acid and caffeic acid are absorbed in humans, J. Nutr. 131 (2001) 66-71. https://doi.org/10.1093/jn/131.1.66.

[48]

A.S. Levey, L.A. Stevens, C.H. Schmid, et al., A new equation to estimate glomerular filtration rate, Ann. Intern. Med. 150 (2009) 604-612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

[49]

L.C. Bourne, C. Rice-Evans, Bioavailability of ferulic acid, Biochem. Biophys. Res. Commun. 253 (1998) 222-227. https://doi.org/10.1006/bbrc.1998.9681.

[50]

S. Lafay, C. Morand, C. Manach, et al., Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats, Br. J. Nutr. 96 (2006) 39-46. https://doi.org/10.1079/bjn20061714.

[51]

R.B. Sartor, Microbial influences in inflammatory bowel diseases, Gastroenterology 134 (2008) 577-94. https://doi.org/10.1053/j.gastro.2007.11.059.

[52]

G.M. Pasinetti, R. Singh, S. Westfall, et al., The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice, J. Alzheimers. Dis. 63 (2018) 409-421. https://doi.org/10.3233/JAD-171151.

[53]

M. Gomez-Juaristi, S. Martinez-Lopez, B. Sarria, et al., Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites, Food Funct. 9 (2018) 331-343. https://doi.org/10.1039/c7fo01553d.

[54]

J.A. da Encarnacao, T.L. Farrell, A. Ryder, et al., In vitro enzymic hydrolysis of chlorogenic acids in coffee, Mol. Nutr. Food Res. 59 (2015) 231-239. https://doi.org/10.1002/mnfr.201400498.

[55]

F. Tomas-Barberan, R. Garcia-Villalba, A. Quartieri, et al., In vitro transformation of chlorogenic acid by human gut microbiota, Mol. Nutr. Food Res. 58 (2014) 1122-1131. https://doi.org/10.1002/mnfr.201300441.

[56]

M.P. Gonthier, C. Remesy, A. Scalbert, et al., Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro, Biomed. Pharmacother. 60 (2006) 536-540. https://doi.org/10.1016/j.biopha.2006.07.084.

[57]

M. Vollmer, D. Schroter, S. Esders, et al., Chlorogenic acid versus amaranth’s caffeoylisocitric acid-gut microbial degradation of caffeic acid derivatives, Food Res. Int. 100 (2017) 375-384. https://doi.org/10.1016/j.foodres.2017.06.013.

[58]

M. Naranjo Pinta, I. Montoliu, A.M. Aura, et al., In vitro gut metabolism of [U-13C]acid-quinic, the other hydrolysis product of chlorogenic acid, Mol. Nutr. Food Res. 62 (2018) e1800396. https://doi.org/10.1002/mnfr.201800396.

[59]

M.V. Selma, J.C. Espin, F.A. Tomas-Barberan, Interaction between phenolics and gut microbiota: Role in human health, J. Agric. Food Chem. 57 (2009) 6485-6501. https://doi.org/10.1021/jf902107d.

[60]

W. Li, D. Xie, J. W. Frost, Benzene-free synthesis of catechol: Interfacing microbial and chemical catalysis, J. Am. Chem. Soc. 127 (2005) 2874-2882. https://doi.org/10.1021/ja045148n.

[61]

H. P. V. Rupasinghe, I. Parmar, S. V. Neir, Biotransformation of cranberry proanthocyanidins to probiotic metabolites by Lactobacillus rhamnosus enhances their anticancer activity in HepG2 cells in vitro, Oxid. Med. Cell Longev. 2019 (2019) 4750795. https://doi.org/10.1155/2019/4750795.

[62]

G. van’t Slot, H.U. Humpf, Degradation and metabolism of catechin, epigallocatechin-3-gallate (egcg), and related compounds by the intestinal microbiota in the pig cecum model, J. Agric. Food Chem. 57 (2009) 8041-8048. https://doi.org/10.1021/jf900458e.

[63]

M. Cui, Y. Wei, J. Tan, et al., Biochemical investigations of polyphenol degradation enzymes in the phototrophic bacterium Rubrivivax gelatinosus, Biochem. J. 480 (2023) 1753-1766. https://doi.org/10.1042/BCJ20230387.

[64]

G. Yang, S. Hong, P. Yang, et al., Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria, Nat. Commun. 12 (2021) 790. https://doi.org/10.1038/s41467-021-20974-2.

[65]

M.N. Alsuhaibani, G.S. Aljuraiban, E.A. Aljazairy, et al., Dietary polyphenols in relation to gut microbiota composition in Saudi Arabian females, Metabolites 13 (2023) 6. https://doi.org/10.3390/metabo13010006.

[66]

J. Yang, P. Kurnia, S.M. Henning, et al., Effect of standardized grape powder consumption on the gut microbiome of healthy subjects: A pilot study, Nutrients 13 (2021) 3965. https://doi.org/10.3390/nu13113965.

[67]

M.H. Xie, G.J. Chen, P. Wan, et al., Modulating effects of dicaffeoylquinic acids from ilex kudingcha on intestinal microecology in vitro, J. Agr. Food Chem. 65 (2017) 10185-10196. https://doi.org/10.1021/acs.jafc.7b03992.

[68]

C. Fritsch, A. Jansch, M.A. Ehrmann, et al., Characterization of cinnamoyl esterases from different lactobacilli and bifidobacteria, Curr. Microbiol. 74 (2017) 247-256. https://doi.org/10.1007/s00284-016-1182-x.

[69]

D. Couteau, A.L. McCartney, G.R. Gibson, et al., Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid, J. Appl. Microbiol. 90 (2001) 873-881. https://doi.org/10.1046/j.1365-2672.2001.01316.x.

[70]

K.K. Lai, G.L. Lorca, C.F. Gonzalez, Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats, Appl. Environ. Microbiol. 75 (2009) 5018-5024. https://doi.org/10.1128/AEM.02837-08.

[71]

C. Marmet, L. Actis-Goretta, M. Renouf, et al., Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee, J. Pharm. Biomed. Anal. 88 (2014) 617-625. https://doi.org/10.1016/j.jpba.2013.10.009.

[72]

B.W. Zhang, Y. S. Dong, N. Yu, et al., Intestinal metabolism of baicalein after oral administration in mice: Pharmacokinetics and mechanisms, J. Funct. Foods 54 (2019) 53-63. https://doi.org/10.1016/j.jff.2018.12.037.

[73]

J. Tan, R. Hu, J. Gong, et al., Protection against metabolic associated fatty liver disease by protocatechuic acid, Gut Microbes 15 (2023) 2238959. https://doi.org/10.1080/19490976.2023.2238959.

[74]

D. Han, Y. Wu, D. Lu, et al., Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation, Cell Death Dis. 14 (2023) 656. https://doi.org/10.1038/s41419-023-06190-4.

[75]

H. Zhao, O.P. Lazarenko, J.R. Chen, Hippuric acid and 3-(3-hydroxyphenyl) propionic acid inhibit murine osteoclastogenesis through rankl-rank independent pathway, J. Cell. Physiol. 235 (2020) 599-610. https://doi.org/10.1002/jcp.28998.

[76]

M. Ghasemi-Dehnoo, H. Amini-Khoei, Z. Lorigooini, et al., Ferulic acid ameliorates ulcerative colitis in a rat model via the inhibition of two LPS-TLR4-NF-κB and NF-κB-INOS-NO signaling pathways and thus alleviating the inflammatory, oxidative and apoptotic conditions in the colon tissue, Inflammopharmacology 31 (2023) 2587-2597. https://doi.org/10.1007/s10787-023-01277-y.

[77]

L.W. Peterson, D. Artis, Intestinal epithelial cells: Regulators of barrier function and immune homeostasis, Nat. Rev. Immunol. 14 (2014) 141-53. https://doi.org/10.1038/nri3608.

[78]

B.R. So, S. Kim, S.H. Jang, et al., Dietary protocatechuic acid redistributes tight junction proteins by targeting Rho-associated protein kinase to improve intestinal barrier function, Food Funct. 14 (2023) 4777-4791. https://doi.org/10.1039/d3fo00605k.

[79]

Y.T. Loo, K. Howell, M. Chan, et al., Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods, Compr. Rev. Food Sci. Food Saf. 19 (2020) 1268-1298. https://doi.org/10.1111/1541-4337.12563.

[80]

W. Leonard, P. Zhang, D. Ying, et al., Hydroxycinnamic acids on gut microbiota and health, Compr. Rev. Food Sci. Food Saf. 20 (2021) 710-737. https://doi.org/10.1111/1541-4337.12663.

[81]

Y. Xi, H. Li, M. Yu, et al., Protective effects of chlorogenic acid on trimethyltin chloride-induced neurobehavioral dysfunctions in mice relying on the gut microbiota, Food Funct. 13 (2022) 1535-1550. https://doi.org/10.1039/d1fo03334d.

[82]

H.C. Lee, A.M. Jenner, C.S. Low, et al., Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota, Res. Microbiol. 157 (2006) 876-84. https://doi.org/10.1016/j.resmic.2006.07.004.

[83]

H.U. Celebioglu, M. Delsoglio, S. Brix, et al., Plant polyphenols stimulate adhesion to intestinal mucosa and induce proteome changes in the probiotic Lactobacillus acidophilus NCFM, Mol. Nutr. Food Res. 62 (2018) 1-30. https://doi.org/10.1002/mnfr.201700638.

Food Science and Human Wellness
Article number: 9250312
Cite this article:
Zhang Y, Zhang B, Liu X, et al. Gastrointestinal distribution and in vitro-microbial biotransformation of chlorogenic acid. Food Science and Human Wellness, 2025, 14(7): 9250312. https://doi.org/10.26599/FSHW.2024.9250312
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return