PDF (4.9 MB)
Collect
Submit Manuscript
Article | Open Access

Innovative 3D microfluidic intestinal organoid model for assessing cadmium bioavailability in food: implications for enhanced exposure risk assessment

Yan Lia,b,1Wen Suna,b,1Qiao WangcWan ShicYu ChendZhiyong GongcXiao Guoc()Xin Liuc()Yongning Wuc,e()
Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Co., Ltd., Wuhan 430023, China
State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Co., Ltd., Beijing 100024, China
Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China

1 These authors contributed equally.

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• A novel 3D intestinal organoid model was developed to assess Cd bioavailability.

• The new model overcome limitations of conventional planar Transwell model.

• The new model closely recapitulated the physiological intestinal microenvironment.

• The Cd bioavailability in new model was comparable to that of the mouse model.

Graphical Abstract

View original image Download original image

Abstract

Given the severe toxicity and widespread presence of cadmium (Cd) in staple foods such as rice, accurate dietary exposure assessments are imperative for public health. In vitro bioavailability is commonly used to adjust dietary exposure levels of risk factors; however, traditional planar Transwell models have limitations, such as cell dedifferentiation and lack of key intestinal components, necessitating a more physiologically relevant in vitro platform. This study introduces an innovative three-dimensional (3D) intestinal organoid model using a microfluidic chip to evaluate Cd bioavailability in food. Caco-2 cells were cultured on the chip to mimic small intestinal villi’s 3D structure, mucus production, and absorption functions. The model’s physiological relevance was thoroughly characterized, demonstrating the formation of a confluent epithelial monolayer with well-developed tight junctions (ZO-1), high microvilli density (F-actin), and significant mucus secretion (Alcian blue staining), closely resembling the physiological intestinal epithelium. Fluorescent particle tracking confirmed its ability to simulate intestinal transport and diffusion. The Cd bioavailability in rice measured by the 3D intestinal organoid model ((9.07 ± 0.21)%) was comparable to the mouse model ((12.82 ± 3.42)%) but significantly lower than the Caco-2 monolayer model ((26.97 ± 1.11)%). This 3D intestinal organoid model provides a novel and reliable strategy for in vitro assessment of heavy metal bioavailability in food, with important implications for food safety and risk assessment.

Electronic Supplementary Material

Download File(s)
fshw-14-5-9250364_ESM.docx (15.1 KB)

References

[1]

J. Zheng, M. Li, B. Tang, et al., Levels, spatial distribution, and impact factors of heavy metals in the hair of metropolitan residents in China and human health implications, Environ. Sci. Technol. 55 (2021) 10578-10588. https://doi.org/10.1021/acs.est.1c02001.

[2]

S. Fujimaki, N. Suzui, N.S. Ishioka, et al., Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant, Plant Physiol. 152 (2010) 1796-1806. https://doi.org/10.1104/pp.109.151035.

[3]

L. Tang, Y. Hamid, D. Liu, et al., Foliar application of zinc and selenium alleviates cadmium and lead toxicity of water spinach-bioavailability/ cytotoxicity study with human cell lines, Environ. Int. 145 (2020) 106122. https://doi.org/10.1016/j.envint.2020.106122.

[4]

W. Tian, M.Y. Zhang, D.P. Zong, et al., Are high-risk heavy metal(loid)s contaminated vegetables detrimental to human health? A study of incorporating bioaccessibility and toxicity into accurate health risk assessment, Sci. Total Environ. 897 (2023) 165514. https://doi.org/10.1016/j.scitotenv.2023.165514.

[5]

K.L. Harris, L.D. Banks, J.A. Mantey, et al., Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis, Expert Opin. Drug Metab. Toxicol. 9 (2013) 1465-1480. https://doi.org/10.1517/17425255.2013.823157.

[6]

Q. Lin, Y. Hamid, H. Wang, et al., Co-foliar application of zinc and nano-silicon to rice helps in reducing cadmium exposure risk: investigations through in-vitro digestion with human cell line bioavailability assay, J. Hazard. Mater. 468 (2024) 133822. https://doi.org/10.1016/j.jhazmat.2024.133822.

[7]

D. Liu, L. Lu, M. Wang, et al., Tetracycline uptake by pak choi grown on contaminated soils and its toxicity in human liver cell line HL-7702, Environ. Pollut. 253 (2019) 312-321. https://doi.org/10.1016/j.envpol.2019.06.086.

[8]

J. Li, Y. Song, R.D. Vogt, et al., Bioavailability and cytotoxicity of cerium-(IV), copper-(II), and zinc oxide nanoparticles to human intestinal and liver cells through food, Sci. Total Environ. 702 (2020) 134700. https://doi.org/10.1016/j.scitotenv.2019.134700.

[9]

T. Langerholc, P.A. Maragkoudakis, J. Wollgast, et al., Novel and established intestinal cell line models - an indispensable tool in food science and nutrition, Trends Food Sci. Technol. 22 (2011) S11-s20. https://doi.org/10.1016/j.tifs.2011.03.010.

[10]

K.J. Wu, B. Gong, P.C. Wang, et al., Assessment and comparison of bioavailability of cadmium in different foods using in vitro, in cellulo, and in vivo models, Food Anal. Methods. 15 (2022) 2951-2958. https://doi.org/10.1007/s12161-022-02338-8.

[11]

B.M. Baker, C.S. Chen, Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues, J. Cell Sci. 125 (2012) 3015-3024. https://doi.org/10.1242/jcs.079509.

[12]

K.J. Jang, A.P. Mehr, G.A. Hamilton, et al., Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment, Integr. Biol. 5 (2013) 1119-1129. https://doi.org/10.1039/c3ib40049b.

[13]

M.E. Johansson, H. Sjövall, G.C. Hansson, The gastrointestinal mucus system in health and disease, Nat. Rev. Gastroenterol. Hepatol. 10 (2013) 352-361. https://doi.org/10.1038/nrgastro.2013.35.

[14]

C. Hu, S. Yang, T. Zhang, et al., Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages, Environ. Int. 184 (2024) 108415. https://doi.org/10.1016/j.envint.2024.108415.

[15]

H.J. Kim, J. Lee, J.H. Choi, et al., Co-culture of living microbiome with microengineered human intestinal villi in a gut-on-a-chip microfluidic device, J. Vis. Exp. 30 (2016) 54344. https://doi.org/10.3791/54344.

[16]

Z. Hou, R. Meng, G. Chen, et al., Distinct accumulation of nanoplastics in human intestinal organoids, Sci. Total Environ. 838 (2022) 155811. https://doi.org/10.1016/j.scitotenv.2022.155811.

[17]

Y. Wei, X. Zheng, Z. Zhang, et al., In vivo-in vitro correlations for the assessment of cadmium bioavailability in vegetables, J. Agric. Food Chem. 69 (2021) 12295-12304. https://doi.org/10.1021/acs.jafc.1c03284.

[18]

A.G. Oomen, C.J. Rompelberg, M.A. Bruil, et al., Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants, Arch. Environ. Contam. Toxicol. 44 (2003) 281-287. https://doi.org/10.1007/s00244-002-1278-0.

[19]

M.E.V. Johansson, D. Ambort, T. Pelaseyed, et al., Composition and functional role of the mucus layers in the intestine, Cell. Mol. Life Sci. 68 (2011) 3635-3641. https://doi.org/10.1007/s00018-011-0822-3.

[20]

A. Schepers, C. Li, A. Chhabra, et al., Engineering a perfusable 3D human liver platform from iPS cells, Lab Chip 16 (2016) 2644-2653. https://doi.org/10.1039/c6lc00598e.

[21]

C. Li, Y. Sun, T. He, et al., Synergistic effect of lactoferrin and osteopontin on intestinal barrier injury, Int. J. Biol. Macromol. 253 (2023) 127416. https://doi.org/10.1016/j.ijbiomac.2023.127416.

[22]

X. Deng, G. Zhang, C. Shen, et al., Hollow fiber culture accelerates differentiation of Caco-2 cells, Appl. Microbiol. Biotechnol. 97 (2013) 6943-6955. https://doi.org/10.1007/s00253-013-4975-x.

[23]

E. Sciurti, L. Blasi, C.T. Prontera, et al., TEER and ion selective transwell-integrated sensors system for Caco-2 cell model, Micromachines 14 (2023) 496. https://doi.org/10.3390/mi14030496.

[24]

R. Aziz, M.T. Rafiq, T. Li, et al., Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702), J. Agric. Food Chem. 63 (2015) 3599-3608. https://doi.org/10.1021/jf505557g.

[25]

Q. Lin, Y. Hamid, H. Yang, et al., Cadmium mobility and health risk assessment in the soil-rice-human system using in vitro biaccessibility and in vivo bioavailability assay: two year field experiment, Sci. Total Environ. 867 (2023) 161564. https://doi.org/10.1016/j.scitotenv.2023.161564.

[26]

L. Yang, X. Zhang, D. Zhao, et al., Relative bioavailability of cadmium in rice: assessment, modeling, and application for risk assessment, Foods 12 (2023) 984. https://doi.org/10.3390/foods12050984.

[27]

P.G. Reeves, R.L. Chaney, Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets, Environ. Res. 96 (2004) 311-322. https://doi.org/10.1016/j.envres.2004.02.013.

[28]

Q. Lv, Q. He, Y. Wu, et al., Investigating the bioaccessibility and bioavailability of cadmium in a cooked rice food matrix by using an 11-day rapid Caco-2/HT-29 co-culture cell model combined with an in vitro digestion model, Biol. Trace Elem. Res. 190 (2019) 336-348. https://doi.org/10.1007/s12011-018-1554-0.

[29]

S. Sun, X.F. Zhou, Z. Li, et al., In vitro and in vivo testing to determine Cd bioaccessibility and bioavailability in contaminated rice in relation to mouse chow, Int. J. Environ. Res. Public Health. 16 (2019) 871. https://doi.org/10.3390/ijerph16050871.

[30]

W. Shin, H.J. Kim, 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert, Nat. Protoc. 17 (2022) 910-939. https://doi.org/10.1038/s41596-021-00674-3.

[31]

H.J. Kim, H. Li, J.J. Collins, et al., Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip, PNAS 113 (2016) E7-15. https://doi.org/10.1073/pnas.1522193112.

[32]

J. Taelman, M. Diaz, J. Guiu, Human intestinal organoids: promise and challenge, Front. Cell Dev. Biol. 10 (2022) 854740. https://doi.org/10.3389/fcell.2022.854740.

[33]

A.S. Fanning, B.J. Jameson, L.A. Jesaitis, et al., The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton, J. Biol. Chem. 273 (1998) 29745-29753. https://doi.org/10.1074/jbc.273.45.29745.

[34]

S. Nathani, N. Das, P. Katiyar, et al., Consumption of honey ameliorates lipopolysaccharide-induced intestinal barrier dysfunction via upregulation of tight junction proteins, Eur. J. Nutr. 62 (2023) 3033-3054. https://doi.org/10.1007/s00394-023-03203-y.

[35]

O. Kwon, T.S. Han, M.Y. Son, Intestinal morphogenesis in development, regeneration, and disease: The potential utility of intestinal organoids for studying compartmentalization of the crypt-villus structure, Front. Cell Dev. Biol. 8 (2020) 593969. https://doi.org/10.3389/fcell.2020.593969.

[36]

J.J. Dehmer, A.P. Garrison, K.E. Speck, et al., Expansion of intestinal epithelial stem cells during murine development, PloS One 6 (2011) e27070. https://doi.org/10.1371/journal.pone.0027070.

[37]

K.D. Sumigray, M. Terwilliger, T. Lechler, Morphogenesis and compartmentalization of the intestinal crypt, Dev. Cell 45 (2018) 183-197.https://doi.org/10.1016/j.devcel.2018.03.024.

[38]

J.J. Faust, K. Doudrick, Y. Yang, et al., Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation, Cell Biol. Toxicol. 30 (2014) 169-188. https://doi.org/10.1007/s10565-014-9278-1.

[39]

D. Dutta, I. Heo, H. Clevers, Disease modeling in stem cell-derived 3D organoid systems, Trends Mol. Med. 23 (2017) 393-410. https://doi.org/10.1016/j.molmed.2017.02.007.

[40]

S. Miura, A. Suzuki, Brief summary of the current protocols for generating intestinal organoids, Dev. Growth Differ. 60 (2018) 387-392. https://doi.org/10.1111/dgd.12559.

[41]

R. Przybylla, M. Krohn, M.L. Sellin, et al., Novel in vitro models for cell differentiation and drug transport studies of the human intestine, Cells 12 (2023) 2371. https://doi.org/10.3390/cells12192371.

[42]

J. McCright, A. Sinha, K. Maisel, Generating an in vitro gut model with physiologically relevant biophysical mucus properties, Cell. Mol. Bioeng. 15 (2022) 479-491. https://doi.org/10.1007/s12195-022-00740-0.

[43]

A. Macierzanka, A.R. Mackie, L. Krupa, Permeability of the small intestinal mucus for physiologically relevant studies: impact of mucus location and ex vivo treatment, Sci. Rep. 9 (2019) 17516. https://doi.org/10.1038/s41598-019-53933-5.

[44]

S.Y. Lee, Y. Lee, N. Choi, et al., Development of gut-mucus chip for intestinal absorption study, BioChip J. 17 (2023) 230-243. https://doi.org/10.1007/s13206-023-00097-0.

[45]

I. Sabolić, D. Breljak, M. Škarica, et al., Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs, BioMetals 23 (2010) 897-926. https://doi.org/10.1007/s10534-010-9351-z.

[46]

R.V. McNeill, A.S. Mason, M.E. Hodson, et al., Specificity of the metallothionein-1 response by cadmium-exposed normal human urothelial cells, Int. J. Mol. Sci. 20 (2019) 1344. https://doi.org/10.3390/ijms20061344.

[47]

W. Xiao, Y. Yang, N. Tang, et al., Innovative accumulative risk assessment of co-exposure to Cd, As, and Pb in contaminated rice based on their in vivo bioavailability and in vitro bioaccessibility, Sci. Total Environ. 912 (2024) 168922. https://doi.org/10.1016/j.scitotenv.2023.168922.

[48]

X. Zheng, Z. Zhang, J. Chen, et al., Comparative evaluation of in vivo relative bioavailability and in vitro bioaccessibility of arsenic in leafy vegetables and its implication in human exposure assessment. J. Hazard Mater. 423(Pt A) (2022) 126909. https://doi.org/10.1016/j.jhazmat.2021.126909.

[49]

P. Zhuang, S. Sun, X.F. Zhou, et al., Bioavailability and bioaccessibility of cadmium in contaminated rice by in vivo and in vitro bioassays, Sci. Total Environ. 719 (2020) 137453. https://doi.org/10.1016/j.scitotenv.2020.137453.

[50]

S.W. Li, H.J. Sun, H.B. Li, et al., Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils, Environ. Int. 94 (2016) 600-606. https://doi.org/10.1016/j.envint.2016.06.022.

[51]

D. Zhao, P. Wang, F.J. Zhao, Dietary cadmium exposure, risks to human health and mitigation strategies, Crit. Rev. Env. Sci. Tec. 53(8) (2023) 939-963. https://doi.org/10.1080/10643389.2022.2099192.

[52]

A. Fatehullah, S. Sharma, I.P. Newton, et al., Increased variability in ApcMin/+ intestinal tissue can be measured with microultrasound, Sci. Rep. 6 (2016) 29570. https://doi.org/10.1038/srep29570.

[53]

L.J. Broutier, G. Mastrogiovanni, M.M.A. Verstegen, et al., Human primary liver cancer-derived organoid cultures for disease modelling and drug screening, Nat. Med. 23 (2017) 1424-1435. https://doi.org/10.1038/nm.4438.

[54]

Y.E. Bar-Ephraim, K. Kretzschmar, H. Clevers, Organoids in immunological research, Nat. Rev. Immunol. 20 (2020) 279-293. https://doi.org/10.1038/s41577-019-0248-y.

[55]

M.S. Jeon, Y.Y. Choi, S.J. Mo, et al., Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip, Nano Converg. 9 (2022) 8. https://doi.org/10.1186/s40580-022-00299-6.

[56]

H.J. Kim, D. Huh, G. Hamilton, et al., Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow, Lab Chip 12 (2012) 2165-2174. https://doi.org/10.1039/c2lc40074j.

[57]

M. Wang, Y. Sasaki, R. Sakagami, et al., Perfluoropolyether-based gut-liver-on-a-chip for the evaluation of first-pass metabolism and oral bioavailability of drugs, ACS Biomater. Sci. Eng. 10 (2024) 4635-4644. https://doi.org/10.1021/acsbiomaterials.4c00605.

[58]

C. Beaurivage, A. Kanapeckaite, C. Loomans, et al., Development of a human primary gut-on-a-chip to model inflammatory processes, Sci. Rep. 10 (2020) 21475. https://doi.org/10.1038/s41598-020-78359-2.

Food Science and Human Wellness
Article number: 9250364
Cite this article:
Li Y, Sun W, Wang Q, et al. Innovative 3D microfluidic intestinal organoid model for assessing cadmium bioavailability in food: implications for enhanced exposure risk assessment. Food Science and Human Wellness, 2025, 14(5): 9250364. https://doi.org/10.26599/FSHW.2024.9250364
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return