PDF (60.2 MB)
Collect
Submit Manuscript
Article | Open Access

Axillaridine A suppresses osteoclastogenesis and alleviates ovariectomy-induced bone loss via inhibition of RANKL-mediated RANK signaling pathways

Jin Lia,b,1Jing Xub,c,1Zhe Jiangb,c,1Meiyan Duanb,cYingqi Yinb,cZemin Xiangb,cXuanjun WangbJun ShengbTiti Liua,b()Huanhuan Xua,b()
College of Science, Yunnan Agricultural University, Kunming 650201, China
Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China

1 These authors contributed equally to this work.

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Axillaridine A (AA) inhibits RANKL-induced osteoclast differentiation.

• AA inhibits osteoclastogenesis-related gene and protein expression.

• AA inhibits RANKL-mediated RANK signaling pathways.

• AA binds to RANKL and disrupts the RANKL-RANK interaction.

• AA ameliorates OVX-induced bone loss by inhibiting osteoclastogenesis.

Graphical Abstract

View original image Download original image

Abstract

Steroidal alkaloids are the main active components in many medicinal plants and exhibit diverse biological activities. Axillaridine A (AA) is a newly discovered steroidal alkaloid. However, whether AA could suppress osteoclastogenesis and alleviate ovariectomy-induced bone loss in mice remains unknown. In vitro, AA significantly suppressed the receptor activator of nuclear factor-‍κB (NF-‍κB) ligand (RANKL)‍-induced osteoclast differentiation via downregulating the expression of osteoclastogenesis-related marker genes, proteins, and transcriptional regulators, including tartrate-resistant acid phosphatase (TRAP), c-Src, matrix metallopeptidase-9 (MMP-9), cathepsin K, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), and c-Fos. This was achieved by blocking RANKL-RANK interaction and inhibiting RANKL-mediated RANK signaling pathways, including NF‍-‍κB, AKT, and mitogen-activated protein kinases (MAPKs) in osteoclast precursors. In vivo, AA significantly inhibited the ovariectomized (OVX)‍-induced body weight gain and blood glucose increase in mice. AA did not adversely affect the histomorphologies, weights, and indices of the kidney and liver in OVX mice. AA effectively ameliorated bone loss in OVX mice by inhibiting osteoclastogenesis. AA significantly inhibited the serum levels of tartrate-resistant acid phosphatase 5b (TRACP-5b) and C-telopeptide of type I collagen (CTX-‍I). AA significantly inhibited the OVX-induced expression of osteoclastogenesis-related marker genes and proteins in the femur. In summary, AA alleviates ovariectomy-induced bone loss in mice by suppressing osteoclastogenesis via inhibition of RANKL-mediated RANK signaling pathways and could be potentially used for the prevention and treatment of osteoclast-related diseases such as osteoporosis.

Electronic Supplementary Material

Download File(s)
fshw-14-6-9250397_ESM.pdf (1,020 KB)

References

[1]

S. Song, Y. Guo, Y. Yang, et al., Advances in pathogenesis and therapeutic strategies for osteoporosis, Pharmacol. Ther. 237 (2022) 108168. https://doi.org/10.1016/j.pharmthera.2022.108168.

[2]

J. M. Kim, C. Lin, Z. Stavre, et al., Osteoblast-Osteoclast communication and bone homeostasis, Cells 9 (2020) 2073. https://doi.org/10.3390/cells9092073.

[3]

Y. Hu, Z. Hou, Z. Liu, et al., Oyster mantle-derived exosomes alleviate osteoporosis by regulating bone homeostasis, Biomaterials 311 (2024) 122648. https://doi.org/10.1016/j.biomaterials.2024.122648.

[4]

Y. Chang, J. Zhang, Z. Liu, et al., Andrographolide stimulates osteoblastogenesis and bone formation by inhibiting nuclear factor kappa-B signaling both in vivo and in vitro, J. Orthop. Translat. 19 (2019) 47-57. https://doi.org/10.1016/j.jot.2019.02.001.

[5]

F. Pouresmaeili, B. Kamalidehghan, M. Kamarehei, et al., A comprehensive overview on osteoporosis and its risk factors, Ther. Clin. Risk Manag. 14 (2018) 2029-2049. https://doi.org/10.2147/TCRM.S138000.

[6]

J.Y. Noh, Y. Yang, H. Jung, Molecular mechanisms and emerging therapeutics for osteoporosis, Int. J. Mol. Sci. 21 (2020) 7623. https://doi.org/10.3390/ijms21207623.

[7]

M.A. Clynes, N.C. Harvey, E.M. Curtis, et al., The epidemiology of osteoporosis, Br. Med. Bull. 133 (2020) 105-117. https://doi.org/10.1093/bmb/ldaa005.

[8]

C. Lei, J. H. Song, S. Li, et al., Advances in materials-based therapeutic strategies against osteoporosis, Biomaterials 296 (2023) 122066. https://doi.org/10.1016/j.biomaterials.2023.122066.

[9]

Y. Ikebuchi, S. Aoki, M. Honma, et al., Coupling of bone resorption and formation by RANKL reverse signalling, Nature 561 (2018) 195-200. https://doi.org/10.1038/s41586-018-0482-7.

[10]

A. Anthamatten, A. Parish, Clinical update on osteoporosis, J. Midwifery Womens Health 64 (2019) 265-275. https://doi.org/10.1111/jmwh.12954.

[11]

A. Goss, M. Bartold, P. Sambrook, et al., The nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in dental implant patients: a South Australian case series, J. Oral. Maxillofac. Surg. 68 (2010) 337-343. https://doi.org/10.1016/j.joms.2009.09.037.

[12]

M.T. Drake, B.L. Clarke, S. Khosla, Bisphosphonates: mechanism of action and role in clinical practice, Mayo Clin. Proc. 83 (2008) 1032-1045. https://doi.org/10.4065/83.9.1032.

[13]

S. Khosla, L.C. Hofbauer, Osteoporosis treatment: recent developments and ongoing challenges, Lancet Diabetes Endocrinol. 5 (2017) 898-907. https://doi.org/10.1016/S2213-8587(17)30188-2.

[14]

N. Bonnet, L. Bourgoin, E. Biver, et al., RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass, J. Clin. Invest. 129 (2019) 3214-3223. https://doi.org/10.1172/JCI125915.

[15]

V. Rinotas, F. Liepouri, M.D. Ouzouni, et al., Structure-Based discovery of receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis inhibitors, Int. J. Mol. Sci. 24 (2023) 1290. https://doi.org/10.3390/ijms241411290.

[16]

S. Ferrari, B. Langdahl, Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone, Nat. Rev. Rheumatol. 19 (2023) 307-317. https://doi.org/10.1038/s41584-023-00935-3.

[17]

W.L. Tay, D. Tay, Discontinuingdenosumab: can it be done safely? A review of the literature, Endocrinol. Metab. 37 (2022) 183-194. https://doi.org/10.3803/EnM.2021.1369.

[18]

M. Pan, X. Pan, J. Zhou, et al., Update on hormone therapy for the management of postmenopausal women, Biosci. Trends. 16 (2022) 46-57. https://doi.org/10.5582/bst.2021.01418.

[19]

B. Hauser, N. Alonso, P.L. Riches, Review of current real-world experience with teriparatide as treatment of osteoporosis in different patient groups, J. Clin. Med. 10 (2021) 1403. https://doi.org/10.3390/jcm10071403.

[20]

M.E. Kraenzlin, C. Meier, Parathyroid hormone analogues in the treatment of osteoporosis, Nat. Rev. Endocrinol. 7 (2011) 647-656. https://doi.org/10.1038/nrendo.2011.108.

[21]

Z. Bar-Shavit, The osteoclast: a multinucleated, hematopoietic-origin, boneresorbing osteoimmune cell, J. Cell Biochem. 102 (2007) 1130-1139. https://doi.org/10.1002/jcb.21553.

[22]

M. Asagiri, H. Takayanagi, The molecular understanding of osteoclast differentiation, Bone 40 (2007) 251-264. https://doi.org/10.1016/j.bone.2006.09.023.

[23]

T. Nakashima, M. Hayashi, T. Fukunaga, et al., Evidence for osteocyte regulation of bone homeostasis through RANKL expression, Nat. Med. 17 (2011) 1231-1234. https://doi.org/10.1038/nm.2452.

[24]

S.Y. Han, Y.K. Kim, Berberine suppresses RANKL-induced osteoclast differentiation by inhibiting c-Fos and NFATc1 expression, Am. J. Chin. Med. 47 (2019) 439-455. https://doi.org/10.1142/S0192415X19500228.

[25]

X. Feng, S.L. Teitelbaum, Osteoclasts: new insights, Bone Res. 1 (2013) 11-26. https://doi.org/10.4248/BR201301003.

[26]

J.H. Park, N.K. Lee, S.Y. Lee, Current understanding of RANK signaling in osteoclast differentiation and maturation, Mol. Cells 40 (2017) 706-713. https://doi.org/10.14348/molcells.2017.0225.

[27]

M. Anzai, M. Watanabe-Takahashi, H. Kawabata, et al., A tetravalent peptide that binds to the RANK-binding region of TRAF6 via a multivalent interaction efficiently inhibits osteoclast differentiation, Biochem. Biophys. Res. Commun. 636 (2022) 178-183. https://doi.org/10.1016/j.bbrc.2022.10.075.

[28]

T. Jiang, T. Xia, F. Qiao, et al., Role and regulation of transcription factors in osteoclastogenesis, Int. J. Mol. Sci. 24 (2023) 6175. https://doi.org/10.3390/ijms242216175.

[29]

Y. Yang, Q. Wei, R. An, et al., Anti-osteoporosis effect of semen cuscutae in ovariectomized mice through inhibition of bone resorption by osteoclasts, J. Ethnopharmacol. 285 (2022) 114834. https://doi.org/10.1016/j.jep.2021.114834.

[30]

Q. Xu, Z. Cao, J. Xu, et al., Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases, J. Drug Target. 30 (2022) 394-412. https://doi.org/10.1080/1061186X.2021.2013488.

[31]

Y. Zhang, Y. Li, S. Huang, et al., Two new pregnane alkaloids from Pachysandra terminalis Sieb. et Zucc, Nat. Prod. Res. 35 (2021) 3888-3894. https://doi.org/10.1080/14786419.2020.1744143.

[32]

L.C. Chang, K.P. Bhat, E. Pisha, et al., Activity-guided isolation of steroidal alkaloid antiestrogen-binding site inhibitors from Pachysandra procumbens, J. Nat. Prod. 61 (1998) 1257-1262. https://doi.org/10.1021/np980162x.

[33]

H. Xu, Y. Jia, J. Li, et al., Niloticin inhibits osteoclastogenesis by blocking RANKL-RANK interaction and suppressing the AKT, MAPK, and NF-κB signaling pathways, Biomed. Pharmacother. 149 (2022) 112902. https://doi.org/10.1016/j.biopha.2022.112902.

[34]

H. Xu, D. Yin, T. Liu, et al., Tea polysaccharide inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells and ameliorates ovariectomy-induced osteoporosis in rats, Biomed. Pharmacother. 102 (2018) 539-548. https://doi.org/10.1016/j.biopha.2018.03.125.

[35]

H. Takayanagi, The role of NFAT in osteoclast formation, Ann. N. Y. Acad. Sci. 1116 (2007) 227-237. https://doi.org/10.1196/annals.1402.071.

[36]

V. Fischer, M. Haffner-Luntzer, Interaction between bone and immune cells: implications for postmenopausal osteoporosis, Semin. Cell Dev. Biol. 123 (2022) 14-21. https://doi.org/10.1016/j.semcdb.2021.05.014.

[37]

T. Liu, L. Jiang, Z. Xiang, et al., Tereticornate A suppresses RANKLinduced osteoclastogenesis via the downregulation of c-Src and TRAF6 and the inhibition of RANK signaling pathways, Biomed. Pharmacother. 151 (2022) 113140. https://doi.org/10.1016/j.biopha.2022.113140.

[38]

W. Huang, Y. Gong, L. Yan, ER stress, the unfolded protein response and osteoclastogenesis: a review, Biomolecules 13 (2023) 1050. https://doi.org/10.3390/biom13071050.

[39]

T.D. Rachner, S. Khosla, L.C. Hofbauer, Osteoporosis: now and the future, Lancet 377 (2011) 1276-1287. https://doi.org/10.1016/S0140-6736(10)62349-5.

[40]

L. Zhang, Y.L. Zheng, R. Wang, et al., Exercise for osteoporosis: a literature review of pathology and mechanism, Front. Immunol. 13 (2022) 1005665. https://doi.org/10.3389/fimmu.2022.1005665.

[41]

R. Eastell, T.W. O’Neill, L.C. Hofbauer, et al., Postmenopausal osteoporosis, Nat. Rev. Dis. Primers 2 (2016) 16069. https://doi.org/10.1038/nrdp.2016.69.

[42]

R.M. Arceo-Mendoza, P.M. Camacho, Postmenopausal osteoporosis: latest guidelines, Endocrinol. Metab. Clin. North Am. 50 (2021) 167-178. https://doi.org/10.1016/j.ecl.2021.03.009.

[43]

H. Yasuda, Discovery of the RANKL/RANK/OPG system, J. Bone Miner. Metab. 39 (2021) 2-11. https://doi.org/10.1007/s00774-020-01175-1.

[44]

G. Zhou, X. Zhang, Z. Gu, et al., Research progress on the treatment of knee osteoarthritis combined with osteoporosis by single-herb Chinese medicine and compound, Front. Med. 10 (2023) 1254086. https://doi.org/10.3389/fmed.2023.1254086.

[45]

J. Luo, Z. Yang, Y. Ma, et al., LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption, Nat. Med. 22 (2016) 539-546. https://doi.org/10.1038/nm.4076.

[46]

J. H. Kim, N. Kim, Signaling pathways in osteoclast differentiation, Chonnam. Med. J. 52 (2016) 12-17. https://doi.org/10.4068/cmj.2016.52.1.12.

[47]

X. Li, J. Jiang, Z. Yang, et al., Galangin suppresses RANKL-induced osteoclastogenesis via inhibiting MAPK and NF-κB signalling pathways, J. Cell Mol. Med. 25 (2021) 4988-5000. https://doi.org/10.1111/jcmm.16430.

Food Science and Human Wellness
Article number: 9250397
Cite this article:
Li J, Xu J, Jiang Z, et al. Axillaridine A suppresses osteoclastogenesis and alleviates ovariectomy-induced bone loss via inhibition of RANKL-mediated RANK signaling pathways. Food Science and Human Wellness, 2025, 14(6): 9250397. https://doi.org/10.26599/FSHW.2024.9250397
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return