PDF (1.2 MB)
Collect
Submit Manuscript
Article | Open Access

In-depth exploration of bioactive constituents, biosynthetic pathways, and pharmacological mechanisms of Angelica sinensis: implications for therapeutic development

Xiumin Zhanga,bLijun FubRuimei ZhangbLi LiubYongzheng MabNa Zhanga()
College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
Beijing Academy of Food Sciences, Beijing 100068, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

highlight

• Diverse Bioactive Components: The primary bioactive components in Angelica sinensis include polysaccharides, volatile oils, organic acids, and flavonoids, which play significant roles in promoting blood circulation, modulating immunity, and alleviating pain.

• Biosynthesis Pathways and Influencing Factors: The article explores the biosynthesis pathways of these bioactive components, particularly focusing on key enzymes and transcription factors, and reveals the genetic and environmental factors that influence their synthesis and accumulation.

• Bioactive Properties and Mechanisms: Research on the bioactive properties of this herb indicates that it possesses multiple health benefits, including hepatoprotection, anti-inflammatory effects, immune modulation, anti-tumor activity, circulatory enhancement, and neuroprotection, thereby supporting its potential applications as a functional food and nutraceutical product.

Graphical Abstract

View original image Download original image

Abstract

Angelica sinensis, a well-known traditional Chinese medicinal herb with the unique property of being both a medicine and an edible plant, has been widely used for promoting blood circulation, modulating immunity, and relieving pain. This review comprehensively investigates the extraction methods, structural characteristics, and biological activities of its primary bioactive components, such as polysaccharides, volatile oils, organic acids, and flavonoids. The biosynthesis pathways of these compounds, along with the key enzymes and transcription factors involved, are investigated to understand the factors influencing their synthesis and accumulation. Additionally, the biological activities of A. sinensis, including hepatoprotective, anti-inflammatory, immune-modulatory, anti-tumor, circulatory benefits, and neuroprotection, along with their underlying mechanisms are introduced. These findings provide a solid foundation for the development of A. sinensis as a valuable resource in functional foods and pharmaceutical products.

References

[1]

Y. Long, D. Li, S. Yu, et al., Medicine-food herb: Angelica sinensis, a potential therapeutic hope for Alzheimer’s disease and related complications, Food Funct. 13 (2022) 8783-8803. https://doi.org/10.1039/d2fo01287a.

[2]

Y.B. Li, F.Z. Liu, J. Wang, et al., Systematic evaluation and analysis of the geo-authenticity of Angelica sinensis, World Sci. Technol.-Mod. Tradit. Chin. Med. 20 (2018) 1531-1539.

[3]

H. Zhang, Y.L. Ma, Formula patterns containing Angelica sinensis in the Pharmacopoeia of the People’s Republic of China, J. Tradit. Chin. Med. 36 (2021) 2708-2712. https://doi.org/10.16368/j.issn.1674-8999.2021.12.557.

[4]

W.J. Ni, W.X. Li, X.Y. Wang, et al., Prediction analysis of chemical constituents, pharmacological effects, and quality markers (q-markers) of Angelica sinensis, J. Tradit. Chin. Med. 40 (2022) 40-47; 274. https://doi.org/10.13193/j.issn.1673-7717.2022.06.009.

[5]

X.P. Xia, J. Zhao, Research status of chemical constituents and pharmacological effects of Angelica sinensis, J. Clin. Ration. Drug Use. 13 (2020) 172-174. https://doi.org/10.15887/j.cnki.13-1389/r.2020.06.083.

[6]

W.L. Wei, R. Zeng, C.M. Gu, et al., Angelica sinensis in China: a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis, J. Ethnopharmacol. 190 (2016) 116-141. https://doi.org/10.1016/j.jep.2016.05.023.

[7]

Z.S. Tang, Y.R. Liu, F. Liu, et al., Screening quality markers of Angelica sinensis based on the correlation between efficacious component groups, activity, and efficacy, Chin. Tradit. Herb. Drugs. 52 (2021) 2626-2637.

[8]

J. Nai, C. Zhang, H. Shao, et al., Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide, Int. J. Biol. Macromol. 183 (2021) 2337-2353. https://doi.org/10.1016/j.ijbiomac.2021.05.213.

[9]

R.X. Peng, J. Liu, J. Le., Study on the isolation, purification, and some physicochemical properties of Angelica polysaccharides, West China J. Pharm. Sci. (2004) 412-414. https://doi.org/10.13375/j.cnki.wcjps.2004.06.002.

[10]

Y.L. Gu, X.H. Sun, J. Tang, et al., Isolation, purification, and preliminary structural analysis of water-soluble polysaccharides from Angelica sinensis, J. Food Sci. Biotechnol. (2006) 1-4.

[11]

T. Yang, M. Jia, J. Meng, et al., Immunomodulatory activity of polysaccharide isolated from Angelica sinensis, Int. J. Biol. Macromol. 39 (2006) 179-184. https://doi.org/10.1016/j.ijbiomac.2006.02.013.

[12]

W. Cao, X.Q. Li, L. Liu, et al., Structural analysis of water-soluble glucans from the root of Angelica sinensis (Oliv.) Diels, Carbohydr. Res. 341 (2006) 1870-1877. https://doi.org/10.1016/j.carres.2006.04.017.

[13]

W. Cao, X.Q. Li, Y. Hou, et al., Structural analysis and anti-tumor activity in vivo of polysaccharide APS-2A from Angelica sinensis, J. Chin. Med. Mater. 312 (2008) 261-266. https://doi.org/10.1139/o60-098.

[14]

X. Cao, W. Chen, Y. Sun, et al., Structural characteristics and in vitro antitumor activity of Angelica polysaccharide APS-BII, Sci. Technol. Eng. 10 (2010) 1839-1843.

[15]

S. Zhang, B. He, J. Ge, et al., Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats, Int. J. Biol. Macromol. 47 (2010) 546-550. https://doi.org/10.1016/j.ijbiomac.2010.07.012.

[16]

W. Cao, X.Q. Li, X. Wang, et al., Characterizations and anti-tumor activities of three acidic polysaccharides from Angelica sinensis (Oliv.) Diels, Int. J. Biol. Macromol. 46 (2010) 115-122. https://doi.org/10.1016/j.ijbiomac.2009.11.005.

[17]

W. Cao, X.Q. Li, X. Wang, et al., A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway, Phytomedicine. 17 (2010) 598-605. https://doi.org/10.1016/j.phymed.2009.12.014.

[18]

K. Wang, Z. Song, H. Wang, et al., Angelica sinensis polysaccharide attenuates concanavalin a-induced liver injury in mice, Int. Immunopharmacol. 31 (2016) 140-148. https://doi.org/10.1016/j.intimp.2015.12.021.

[19]

W. Liu, K. Xiao, L. Ren, et al., Leukemia cells apoptosis by a newly discovered heterogeneous polysaccharide from Angelica sinensis (Oliv.) Diels, Carbohydr. Polym. 241 (2020) 116279. https://doi.org/10.1016/j.carbpol.2020.116279.

[20]

T. Zhang, W. Liu, C. Fu, et al., Structures and anti-melanoma activities of two polysaccharides from Angelica sinensis (Oliv.) Diels, Int. J. Biol. Macromol. 183 (2021) 972-981. https://doi.org/10.1016/j.ijbiomac.2021.05.021.

[21]

C. Sun, G. Wang, J. Sun, et al., A new method of extracting polygonatum sibiricum polysaccharide with antioxidant function: ultrasound-assisted extraction-deep eutectic solvents method, Foods. 12 (2023) 3438. https://doi.org/10.3390/foods12183438.

[22]

M. Jin, K. Zhao, Q. Huang, et al., Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: a review, Carbohydr. Polym. 89 (2012) 713-722. https://doi.org/10.1016/j.carbpol.2012.04.049.

[23]

F. Yu, H. Li, Y. Meng, et al., Extraction optimization of Angelica sinensis polysaccharides and its antioxidant activity in vivo, Carbohydr. Polym. 94 (2013) 114-119. https://doi.org/10.1016/j.carbpol.2013.01.050.

[24]

Y. Zhao, Y. Shi, H. Yang, et al., Extraction of Angelica sinensis polysaccharides using ultrasound-assisted way and its bioactivity, Int. J. Biol. Macromol. 88 (2016) 44-50. https://doi.org/10.1016/j.ijbiomac.2016.01.113.

[25]

J.X. Lü, S.B. Zhang, Comparative study on four methods for extracting polysaccharides from Angelica sinensis, Tianjin Agric. Sci. 19 (2013) 33-36.

[26]

G.W. Li, R.C. Jin, S.L. Ma, Research on the preparation process of Angelica polysaccharides, Tradit. Chin. Pat. Med. (2007) 1146-1150.

[27]

Y. Wang, X. Li, P. Zhao, et al., Physicochemical characterizations of polysaccharides from Angelica sinensis Radix under different drying methods for various applications, Int. J. Biol. Macromol. 121 (2019) 381-389. https://doi.org/10.1016/j.ijbiomac.2018.10.035.

[28]

L. Zhang, Q. Yan, W. Zhang, et al., Enhancement of the functionality of attenuating acute lung injury by a microemulsion formulation with volatile oil of Angelicae sinensis Radix and Ligusticum chuanxiong Rhizoma encapsulated, Biomed. Pharmacother. 156 (2022) 113888. https://doi.org/10.1016/j.biopha.2022.113888.

[29]

Y. Li, H.M. Feng, X.D. Luo, et al., Research progress on the chemical components and pharmacological effects of Angelica sinensis and predictive analysis of quality markers, Chin. J. Tradit. Chin. Med. Pharm. 40 (2022) 159-166. https://doi.org/10.13193/j.issn.1673-7717.2022.04.036.

[30]

Y. Xu, S. Bian, L. Shang, et al., Phytochemistry, pharmacological effects and mechanism of action of volatile oil from Panax ginseng C.A.Mey: a review, Front. Pharmacol. 15 (2024) 1436624. https://doi.org/10.3389/fphar.2024.1436624.

[31]

Y.M. Chen, J. Wu, P. Liu, et al., The influence of hydroxypropyl-β-cyclodextrin inclusion on the transdermal absorption of Angelica volatile oil, Chin. Pat. Med. 37 (2015) 2636-2641.

[32]

S.H. Sun, G.J. Shen, Y. Bao, et al., Study on the extraction of ligustilide from chuanxiong by different methods, Zhejiang Chem. (2008) 1-3.

[33]

W.R. Tao, Y.H. Zheng, J. Shi, et al., Optimization of the steam distillation extraction process for Angelica volatile oil, Chin. J. Mod. Med. 15 (2013) 879-882. https://doi.org/10.13313/j.issn.1673-4890.2013.10.001.

[34]

Y. Liu, S.X. Gong, S.X. Liu, et al., Study on supercritical CO2 extraction of total phthalein from Angelica sinensis, Mod. Med. Clin. 25 (2010) 448-452.

[35]

N. Walayat, A. Yurdunuseven-Yıldız, M. Kumar, et al., Oxidative stability, quality, and bioactive compounds of oils obtained by ultrasound and microwave-assisted oil extraction, Crit. Rev. Food Sci. Nutr. 64 (2024) 9974-9991. https://doi.org/10.1080/10408398.2023.2219452.

[36]

L. Shen, S. Pang, M. Zhong, et al., A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: principles, advantages, equipment, and combined technologies, Ultrason. Sonochem. 101 (2023) 106646. https://doi.org/10.1016/j.ultsonch.2023.106646.

[37]

Y. Wang, Optimization study on the extraction process of ferulic acid from Angelica sinensis, J. Jiangxi Univ. Tradit. Chin. Med. 30 (2018) 64-66. https://doi.org/10.13881/j.cnki.hljxmsy.2016.0233.

[38]

G.N. Ouyang, Progress in the study of extraction of efficacious components from Angelica sinensis, Pract. Tradit. Chin. Med. Mag. 27 (2011) 569-570.

[39]

Z.Dang, R.Y. Gao, Z. Fu, et al., Supercritical CO2 extraction process conditions and GC-MS analysis of ferulic acid in Angelica sinensis, Guangdong Agric. Sci. (2009) 129-132, 141. https://doi.org/10.16768/j.issn.1004-874x.2009.12.005.

[40]

H. Wu, Q. Huang, S. Chao, et al., Determination of ferulic acid in Angelica sinensis by temperature-controlled hydrophobic ionic liquids-based ultrasound/heating-assisted extraction coupled with high performance liquid chromatography, Molecules 25 (2020) 3356. https://doi.org/10.3390/molecules25153356.

[41]

T.T. Zhu, T.L. Liu, M.H. Zhang, et.al Research progress on biosynthesis and regulation of active ingredients in Angelica sinensis, Chin. Tradit. Herb. Drugs. 54 (2023) 7545-7553.

[42]

W.T. Wei, G.C. Li, T.J. Gao, et al., Study on extraction of total flavonoids from Angelica sinensis and its antibacterial activity in vitro, Lishizhen Med. Mater. Med. Res. 22 (2011) 310-311.

[43]

Y.H. Yang, F. Liu, W.L. Yang, et al., Comparative study on extraction methods and optimization of process conditions for total flavonoids from Angelica sinensis, J. Sichuan Univ. Sci. Eng. (Nat. Sci. Ed.). 27 (2014) 5-8.

[44]

X. Cai, Optimization of extraction process for total flavonoids from Angelica sinensis using response surface methodology, Food Res. Dev. 37 (2016) 100-104.

[45]

C.Y. Li, X.D. Luo, J.Y. Li, et al., Optimization of extraction process for total flavonoids from Angelica sinensis leaves, Liaoning J. Tradit. Chin. Med. 45 (2018) 1456-1459. https://doi.org/10.13192/j.issn.1000-1719.2018.07.039.

[46]

L. Liu, Y.H. Wang, B.N. Zhao, et al., Advances in traditional medicinal uses, coumarin constituents, and pharmacological and toxicological studies of Angelica plants, Pharm. Res. 42 (2023) 403-408, 421. https://doi.org/10.13506/j.cnki.jpr.2023.06.010.

[47]
R.B. Jiang, C.M. Wang, F. Li, Advances in the study of chemical components and antitumor mechanisms of Angelica sinensis, Carcinogenesis, Mutation, and DNA Damage 31 (2019) 162-165.
[48]

F. Wang, X.D. Dai, Determination of amino acid content in Angelica sinensis from different origins, Health Vocat. Educ. 30 (2012) 118-119.

[49]

C. Qu, H. Yan, S.Q. Zhu, et al., Comparative analysis of nucleosides, nucleobases, and amino acids in different parts of Angelicae sinensis Radix by ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry, J. Sep. Sci. 42 (2019) 1122-1132. https://doi.org/10.1002/jssc.201801026.

[50]

Y.J. Zhao, Y. Ma, X.J. Ma, et al., Research and application of bio-synthesis of active components in traditional Chinese medicine, Science China: Life Sciences 52 (2022) 894-907.

[51]

X.Y. Li, X.C. Meng, J. Yao, et al., Mechanisms of ecological stress in promoting the quality formation of authentic medicinal materials and approaches to quality evaluation, Chin. Tradit. Pat. Med. 53 (2022) 1587-1594.

[52]

X. Zhang, X.G. Li, J. Yu, et al., Advances in the study of polysaccharide biosynthesis pathway and key enzymes as quality markers for medicinal plants, Chin. Tradit. Herb. Drugs. 52 (2021) 4752-4762.

[53]

J. Luo, X. Yang, C.X. Yang, et al., Cloning of the glyceraldehyde-3-phosphate dehydrogenase gene from Angelica sinensis and analysis of tissue stability, J. Henan Agric. Univ. 52 (2018) 943-950. https://doi.org/10.16445/j.cnki.1000-2340.2018.06.014.

[54]

M. Pauly, K. Keegstra, Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan, Annu. Rev. Plant Biol. 67 (2016) 235-259. https://doi.org/10.1146/annurev-arplant-043015-112222.

[55]

F.E. Lazzara, R.E. Rodriguez, J.F. Palatnik, Molecular mechanisms regulating Growth-Regulating Factors activity in plant growth, development, and environmental responses, J. Exp. Bot. 75 (2024) 4360-4372. https://doi.org/10.1093/jxb/erae179.

[56]

W.M. Feng, P. Liu, H. Yan, et al., Investigation of enzymes in the phthalide biosynthetic pathway in Angelica sinensis using integrative metabolite profiles and transcriptome analysis, Front. Plant Sci. 13 (2022) 928760. https://doi.org/10.3389/fpls.2022.928760.

[57]

L.F. Cong, M.L. Yan, Z.Y. Zhang, et al., Near-infrared rapid evaluation of anti-inflammatory efficacy of Angelica sinensis based on quality markers, J. Instrum. Anal. 39 (2020) 1320-1326.

[58]

W.Z. Wu, J. Shang, Y.G. Ma, The phenylpropanoid metabolic pathway in plants, Chin. J. Biochem. Mol. Biol. 38 (2022) 1467-1476. https://doi.org/10.13865/j.cnki.cjbmb.2022.03.1604.

[59]

W.J. Li, J. Liu, C.M. Wang, et al., Iosynthesis and regulation of the active component ferulic acid in Angelica sinensis, Chin. Tradit. Herb. Drugs. 39 (2008) 1909-1912.

[60]

Y. Zhang, J. Yang, B. Wan, et al., Preliminary study on the metabolic pattern of ferulic acid in the head and tail of Angelica sinensis, J. Basic Res. Tradit. Chin. Med. 25 (2019) 991-993, 1002. https://doi.org/10.19945/j.cnki.issn.1006-3250.2019.07.042.

[61]

Y.Q. Wang, X. Yang, J. Luo, et al., Construction of prokaryotic expression vector for phenylalanine ammonia lyase gene from Angelica sinensis, J. Gansu Univ. Tradit. Chin. Med. 35 (2018) 1-4. https://doi.org/10.16841/j.issn1003-8450.2018.03.01.

[62]

S.C. Wen, The effect of potassium nutrition on the expression of genes related to the biosynthesis of ferulic acid in Angelica sinensis, Gansu University of Traditional Chinese Medicine, 2015.

[63]

X. Cheng, M.Q. Wang, G. Wang, et al., Cloning and expression pattern analysis of the Angelica sinensis coumarin-3-hydroxylase gene asc3h and its correlation with ferulic acid contentn, Chin. J. Exp. Prescriptio. 29 (2023) 161-166. https://doi.org/10.13422/j.cnki.syfjx.20221313.

[64]
Y.L. Hou, P. Zhang, M. Su, et al., Cloning and expression analysis of the Angelica sinensis caffeoyl-CoA O-methyltransferase gene China wild plant resources, 40 (2021) 20-28. https://doi.org/10.3969/j.issn.1006-9690.2021.01.004.
[65]

J. Yang, C. Zhang, W.H. Li, et al., Comprehensive analysis of transcriptomics and metabolomics between the heads and tails of Angelica sinensis: genes related to phenylpropanoid biosynthesis pathway, Comb. Chem High Throughput Screen 24 (2021) 1417-1427. https://doi.org/10.2174/1386207323999201103221952.

[66]

X. Yang, Y. Wang, R.Q. Yang, et al., Advances in the study of MYB transcription factors regulating phenylpropanoid biosynthesis, J. Anhui Agric. Univ. 46 (2019) 859-864. https://doi.org/10.13610/j.cnki.1672-352x.20191122.018.

[67]

J. Luo, Y. Yang, C.X. Yang, et al., Cloning and expression analysis of the MYB4 transcription factor gene from Angelica sinensis, Henan Agric. Sci. 47 (2018) 48-56. https://doi.org/10.15933/j.cnki.1004-3268.2018.12.008.

[68]

Y. Zong, G.R. Liu, Y. Li, et al., Cloning and functional study of the transcription factor AsMYMB44 from Angelica sinensis, J. Zhejiang Agric. Sci. 35 (2023) 1253-1264.

[69]

W.T. Wen, T.K. Feng, Bioinformatics research on key enzymes of chlorogenic acid synthetic metabolic pathway, Green Sci. Technol. 24 (2022) 205-209. https://doi.org/10.16663/j.cnki.lskj.2022.06.011.

[70]

A.G. Chen, Y.J. Yang, G.L. Liu, et al Advances in the study of key enzyme genes in the biosynthetic pathway of nicotine chlorogenic acid, Mod. Agric. Sci. Technol. (2018) 5-8, 10.

[71]

X.N. Zhang, S.B. Ge, W.Y. Han, et al., Advances in the study of flavonoid biosynthesis and mechanisms of stress resistance in plants, Acta Horticulturae Sinica 50 (2023) 209-224. https://doi.org/10.16420/j.issn.0513-353x.2021-1186.

[72]

W. Liu, Y. Feng, S. Yu, et al., The flavonoid biosynthesis network in plants, Int. J. Mol. Sci. 22 (2021) 2824. https://doi.org/10.3390/ijms222312824.

[73]

T. Zhu, M. Zhang, H. Su, et al., Integrated metabolomic and transcriptomic analysis reveals differential mechanism of flavonoid biosynthesis in two cultivars of Angelica sinensis, Molecules 27 (2022) 306. https://doi.org/10.3390/molecules27010306.

[74]

T.T. Zhu, L. Xu, L. Jin, et al Differential analysis of flavonoid regulatory genes in two varieties of Angelica sinensis based on a mixed sequencing strategy, J. Chin. Exp. Prescription. 29 (2023) 141-147. https://doi.org/10.13422/j.cnki.syfjx.20221514.

[75]

M. Wang, X. Qiu, X. Pan, et al., Transcriptional factor-mediated regulation of active component biosynthesis in medicinal plants, Curr. Pharm. Biotechnol. 22 (2021) 848-866. https://doi.org/10.2174/1389201021666200622121809.

[76]

L.L. Liu, Z.X. Guo, D.Y. Sun, et al., Advances in the study of chalcone synthase in plant disease resistance, Mol. Plant Breed. 21 (2023) 7545-7553. https://doi.org/10.13271/j.mpb.021.007545.

[77]

J. Song, R.X. Wang, B. Sun, et al., Advances in the study of functions and biosynthesis of coumarin compounds, Chin. J. Biotechnol. 42 (2022) 79-90. https://doi.org/10.13523/j.cb.2207014.

[78]

X. Han, C. Li, S. Sun, et al., The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis, Plant J. 112 (2022) 1224-1237. https://doi.org/10.1111/tpj.16007.

[79]

Y.Q. Wang, J. Luo, S.C. Wen, et al., Cloning of the conserved region of the dxr gene in Angelica sinensis and analysis of tissue-specific expression, Chin. Tradit. Herb. Drugs. 45 (2014) 1907-1913.

[80]

J. Luo, C.X. Yang, Y.Q. Wang, et al., Cloning of the asef- gene from Angelica sinensis and analysis of stress response, Acta Botanica Boreali-Occidentalia Sinica 39 (2019) 1371-1378. https://doi.org/10.7606/j.issn.1000-4025.2019.08.1371.

[81]

D. Deng, X.W. Cui, T.M. Huang, et al Bioinformatics of MADS-box in Angelica sinensis and cloning and expression analysis of SOC1, Chin. Tradit. Herb. Drugs. 54 (2023) 1551-1560.

[82]

X.W. Cui, D. Liu, T.M. Huang, et al., Metabolism level during the bolting and flowering process of Angelica sinensis and cloning and expression analysis of key enzyme genes, Chin. Tradit. Herb. Drugs. 54 (2023) 222-234.

[83]

G.E. Batiha, H.M. Shaheen, E.A. Elhawary, et al., Phytochemical constituents, folk medicinal uses, and biological activities of genus Angelica: a review, Molecules 28 (2022) 267. https://doi.org/10.3390/molecules28010267

[84]

A. Kaur, R. Bhatti, Understanding the phytochemistry and molecular insights to the pharmacology of Angelica archangelica L. (garden Angelica) and its bioactive components, Phytother. Res. 35 (2021) 5961-5979. https://doi.org/10.1002/ptr.7206.

[85]

P. Ma, C. Sun, W. Li, et al., Extraction and structural analysis of Angelica sinensis polysaccharide with low molecular weight and its lipid-lowering effect on nonalcoholic fatty liver disease, Food Sci. Nutr. 8 (2020) 3212-3224. https://doi.org/10.1002/fsn3.1581.

[86]

K. Wang, J. Wang, M. Song, et al., Angelica sinensis polysaccharide attenuates CCl4-induced liver fibrosis via the IL-22/STAT3 pathway, Int. J. Biol. Macromol. 162 (2020) 273-283. https://doi.org/10.1016/j.ijbiomac.2020.06.166.

[87]

P. Cao, J. Sun, M.A. Sullivan, et al., Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro, Int. J. Biol. Macromol. 111 (2018) 1133-1139. https://doi.org/10.1016/j.ijbiomac.2018.01.139.

[88]

Y. Zhang, T. Zhou, L. Luo, et al., Pharmacokinetics, biodistribution and receptor mediated endocytosis of a natural Angelica sinensis polysaccharide, Artif. Cells Nanomed. Biotechnol. 46 (2018) 254-263. https://doi.org/10.1080/21691401.2017.1421210.

[89]

Y. Zhou, X. Guo, W. Chen, et al., Angelica polysaccharide mitigates lipopolysaccharide-evoked inflammatory injury by regulating microRNA-10a in neuronal cell line HT22, Artif. Cells Nanomed. Biotechnol. 47 (2019) 3194-3201. https://doi.org/10.1080/21691401.2019.1614595.

[90]

C. Xu, S. Ni, C. Zhuang, et al., Polysaccharide from Angelica sinensis attenuates SNP-induced apoptosis in osteoarthritis chondrocytes by inducing autophagy via the ERK1/2 pathway, Arthritis Res. Ther. 23 (2021) 47. https://doi.org/10.1186/s13075-020-02409-3.

[91]

F. Cheng, Y. Zhang, Q. Li, et al., Inhibition of dextran sodium sulfate-induced experimental colitis in mice by Angelica sinensis polysaccharide, J. Med. Food. 23 (2020) 584-592. https://doi.org/10.1089/jmf.2019.4607.

[92]

J. Wang, B. Ge, Z. Li, et al., Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis, Carbohydr. Polym. 140 (2016) 6-12. https://doi.org/10.1016/j.carbpol.2015.12.050.

[93]

J. Shen, M. Zhang, K. Zhang, et al., Effect of Angelica polysaccharide on mouse myeloid-derived suppressor cells, Front. Immunol. 13 (2022) 989230. https://doi.org/10.3389/fimmu.2022.989230.

[94]

D. Wang, Y. Liu, W. Zhao, The adjuvant effects on vaccine and the immunomodulatory mechanisms of polysaccharides from traditional Chinese medicine, Front. Mol. Biosci. 8 (2021) 655570. https://doi.org/10.3389/fmolb.2021.655570.

[95]

J. Yang, X. Shao, J. Jiang, et al., Angelica sinensis polysaccharide inhibits proliferation, migration, and invasion by downregulating microRNA-675 in human neuroblastoma cell line SH-SY5Y, Cell Biol. Int. 42 (2018) 867-876. https://doi.org/10.1002/cbin.10954.

[96]

F. Ren, J. Li, Y. Wang, et al., The effects of Angelica sinensis polysaccharide on tumor growth and iron metabolism by regulating hepcidin in tumor-bearing mice, Cell Physiol. Biochem. 47 (2018) 1084-1094. https://doi.org/10.1159/000490185.

[97]

M.Z. Wang, X. He, Z. Yu, et al., A nano drug delivery system based on Angelica sinensis polysaccharide for combination of chemotherapy and immunotherapy, Molecules 25 (2020) 96. https://doi.org/10.3390/molecules25133096.

[98]

Y. Zhang, Z. Cui, H. Mei, et al., Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer, Carbohydr. Polym. 219 (2019) 143-154. https://doi.org/10.1016/j.carbpol.2019.04.041.

[99]

F. Lang, J. Qu, H. Yin, et al., Apoptotic cell death induced by Z-ligustilidein human ovarian cancer cells and role of NRF2, Food Chem. Toxicol. 121 (2018) 631-638. https://doi.org/10.1016/j.fct.2018.09.041.

[100]

H. Qi, Z. Jiang, C. Wang, et al., Sensitization of tamoxifen-resistant breast cancer cells by Z-ligustilide through inhibiting autophagy and accumulating DNA damages, Oncotarget. 8 (2017) 29300-29317. https://doi.org/10.18632/oncotarget.16832.

[101]

Y. Zhang, Y. Cheng, N. Wang, et al., The action of JAK, smad and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia, Food Funct. 5 (2014) 1381-1388. https://doi.org/10.1039/c4fo00006d.

[102]

K. Wang, J. Wu, J. Xu, et al., Correction of anemia in chronic kidney disease with Angelica sinensis polysaccharide via restoring epo production and improving iron availability, Front. Pharmacol. 9 (2018) 803. https://doi.org/10.3389/fphar.2018.00803.

[103]

Y. Niu, H. Xiao, B. Wang, et al., Angelica sinensis polysaccharides alleviate the oxidative burden on hematopoietic cells by restoring 5-fluorouracil-induced oxidative damage in perivascular mesenchymal progenitor cells, Pharm. Biol. 61 (2023) 768-778. https://doi.org/10.1080/13880209.2023.2207592.

[104]

XY. Zhang, J. Guan, H. Wu, et al., The influence of Angelica sinensis polysaccharides on the expression of adhesion molecules and cell cycle of mononuclear cells in the bone marrow of irradiation-injured mice, Chin. J. Tissue Eng. Res. 19 (2010) 587-592.

[105]

Y.J. Rui, Y. Zhang, J.Y. Mi, The influence of Angelica sinensis polysaccharides on the expression of adhesion molecules and adhesion function of mononuclear cells in the bone marrow of irradiation-injured mice, Jiangsu J. Tradit. Chin. Med. 43 (2011) 86-88.

[106]

H. Wu, Y. Zhang, X.J. Guan, Comparative study on the hematopoietic function recovery of irradiation-injured mice treated with Angelica sinensis polysaccharides before and after irradiation, J. Chongqing Med. Univ. 35 (2010) 965-969. https://doi.org/10.13406/j.cnki.cyxb.2010.07.002.

[107]

J. Zhang, X. Cui, Z.T. Chen, Study on the mechanism of Angelica sinensis polysaccharides intervening in the abnormality of mitochondrial function in a myelodysplastic anemia model mouse, J. Shandong Univ. Tradit. Chin. Med. 43 (2019) 407-411. https://doi.org/10.16294/j.cnki.1007-659x.2019.04.020.

[108]

K. Du, L. Wang, Z. Wang, et al., Angelica sinensis polysaccharide antagonizes 5-fluorouracil-induced spleen injury and dysfunction by suppressing oxidative stress and apoptosis, Biomed. Pharmacother. 162 (2023) 114602. https://doi.org/10.1016/j.biopha.2023.114602.

[109]

L.D. Du, G.T. Wu, Y.J. Gao, et al., The effect of Angelica sinensis volatile oil on blood pressure reduction and vascular activity in mice, Chin. J. Hosp. Pharm. 34 (2014) 1045-1049. https://doi.org/10.13286/j.cnki.chinhosppharmacyj.2014.13.01.

[110]

W.Z. Liu, G.T. Wu, L.D. Du, et al The hypolipidemic effect and vascular endothelial protection of Angelica sinensis volatile oil in hyperlipidemia model rats, Chin. J. Atherosclerosis. 24 (2016) 989-993.

[111]

L.F. Ji, Q. Xie, L. Yi, et al The influence of Angelica sinensis volatile oil on the expression of mir122 in vascular endothelium of spontaneous hypertensive rats, J. Tradit. Chin. Vet. Med. 37 (2018) 12-14. https://doi.org/10.13823/j.cnki.jtcvm.2018.06.003.

[112]

Q. Qu, L. Yi, L.F. Ji, et al., The influence of Angelica sinensis volatile oil on the ACE2/Ang1-7/Mas receptor axis in spontaneous hypertensive rats, J. Clin. Cardiovasc. Dis. 33 (2017) 584-587. https://doi.org/10.13201/j.issn.1001-1439.2017.06.019.

[113]

Q. Qu, L. Yi, L.F. Ji, et al., The influence of Angelica sinensis volatile oil on the expression of target genes of mir122 in spontaneous hypertensive rats, J. Tradit. Chin. Vet. Med. 37 (2018) 12-14. https://doi.org/10.13823/j.cnki.jtcvm.2018.05.003.

[114]

G.J. Wang, Y. Chen, Q. Yu, et al., The regulatory effect of Angelica sinensis injection on portal pressure and TGFβ1/PI3K pathway in liver cirrhosis rats, J. Integr. Tradit. Chin. Western Med. Liver Dis. 32 (2022) 617-621.

[115]

Y.J. Mao, H. Jiang, R. Yang, et al., The influence of Angelica sinensis volatile oil on the PI3K/AKT/eNOS signaling pathway in vascular endothelium of spontaneous hypertensive rats, Shi Zhen’s Nat. Med. Herbs 33 (2022) 794-796.

[116]

K. Zhang, X. Shen, L. Yang, et al., Exploring the q-markers of Angelica sinensis (Oliv.) Diels of anti-platelet aggregation activity based on spectrum-effect relationships, Biomed. Chromatogr. 36 (2022) e5422. https://doi.org/10.1002/bmc.5422.

[117]

C.Y. Cheng, S.T. Kao, Y.C. Lee, Angelica sinensis extract protects against ischemia-reperfusion injury in the hippocampus by activating p38 MAPK-mediated p90RSK/p-Bad and p90RSK/Creb/BDNF signaling after transient global cerebral ischemia in rats, J. Ethnopharmacol. 252 (2020) 112612. https://doi.org/10.1016/j.jep.2020.112612.

[118]

C.Y. Cheng, H.C. Huang, S.T. Kao, et al., Angelica sinensis extract promotes neuronal survival by enhancing p38 MAPK-mediated hippocampal neurogenesis and dendritic growth in the chronic phase of transient global cerebral ischemia in rats, J. Ethnopharmacol. 278 (2021) 114301. https://doi.org/10.1016/j.jep.2021.114301.

[119]

X.Y. Zhang, H. Qiao, Y.B. Shi, HPLC method with fluorescence detection for the determination of ligustilide in rat plasma and its pharmacokinetics, Pharm. Biol. 52 (2014) 21-30. https://doi.org/10.3109/13880209.2013.805790.

[120]

X. Kuang, H.J. Zhou, A.H. Thorne, et al., Neuroprotective effect of ligustilide through induction of α-secretase processing of both APP and klotho in a mouse model of Alzheimer’s disease, Front. Aging Neurosci. 9 (2017) 353. https://doi.org/10.3389/fnagi.2017.00353.

[121]

W. Xu, L. Yang, J. Li, Protection against β-amyloid-induced neurotoxicity by naturally occurring Z-ligustilide through the concurrent regulation of p38 and PI3-K/Akt pathways, Neurochem. Int. 100 (2016) 44-51. https://doi.org/10.1016/j.neuint.2016.08.012.

[122]

J.L. Lü, L.M. Guo, L.B. Zhang, Research progress on the anti-inflammatory mechanism of natural sesquiterpene compounds, China Journal of Chinese Materia Medica 43 (2018) 3989-3999. https://doi.org/10.19540/j.cnki.cjcmm.20180726.013.

[123]

P. Gu, S. Xu, S. Zhou, et al., Optimization of Angelica sinensis polysaccharide-loaded poly(lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro, Int. J. Biol. Macromol. 107 (2018) 222-229. https://doi.org/10.1016/j.ijbiomac.2017.08.176.

[124]

G. Du, R.M. Hathout, M. Nasr, et al., Intradermal vaccination with hollow microneedles: a comparative study of various protein antigen and adjuvant encapsulated nanoparticles, J. Control. Release. 266 (2017) 109-118. https://doi.org/10.1016/j.jconrel.2017.09.021.

[125]

L. Chen, G. Huang, Antitumor activity of polysaccharides: an overview, Curr. Drug Targets 19 (2018) 89-96. https://doi.org/10.2174/1389450118666170704143018.

[126]

Y.F. Zou, C.Y. Li, Y.P. Fu, et al., The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv.) Diels, J. Ethnopharmacol. 295 (2022) 115446. https://doi.org/10.1016/j.jep.2022.115446.

[127]

P. Jing, X. Song, L. Xiong, et al., Angelica sinensis polysaccharides prevents hematopoietic regression in D-galactose-induced aging model via attenuation of oxidative stress in hematopoietic microenvironment, Mol. Biol. Rep. 50 (2023) 121-132. https://doi.org/10.1007/s11033-022-07898-w.

[128]

S. Lee, H. Zhan, Deciphering the differential impact of thrombopoietin/MPL signaling on hematopoietic stem/progenitor cell function in bone marrow and spleen, Blood 142 (2023) 5589. https://doi.org/10.1182/blood-2023-178894.

[129]

X.Q. Shi, S.J. Yue, Y.P. Tang, et al., A network pharmacology approach to investigate the blood enriching mechanism of danggui buxue decoction, J. Ethnopharmacol. 235 (2019) 227-242. https://doi.org/10.1016/j.jep.2019.01.027.

[130]

Y. Lü, X. Xu, J. Yang, et al., Identification of chemical components and rat serum metabolites in Danggui Buxue decoction based on UPLC-Q-TOF-MS, the UNIFI platform and molecular networks, RSC Advances 13 (2023) 32778-32785. https://doi.org/10.1039/d3ra04419j.

[131]

C.K. Wei, B.Y. Liu, Y.D. Li, The influence of Angelica sinensis volatile oil on blood pressure and vascular inflammatory response in hypertension model rats, Chin. J. Inf. Tradit. Chin. Med. 23 (2016) 71-74.

[132]

X. Qing, W.L. Hong, J.L. Feng, et al., Effects of Angelica volatile oil on renin and angiotensin Ⅱ in spontaneously hypertensive rats, West China J. Pharm. Sci. 33 (2018) 251-254. https://doi.org/10.13375/j.cnki.wcjps.2018.03.007.

[133]

L. Zhang, J.R. Du, J. Wang, et al., Z-Ligustilide extracted from Radix Angelica sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats, Yakugaku Zasshi: J. Pharm. Soc. Japan. 129 (2009) 855-859. https://doi.org/10.1248/yakushi.129.855.

[134]

K.Z. Du, Y. Cui, S. Chen, et al., An integration strategy combined progressive multivariate statistics with anticoagulant activity evaluation for screening anticoagulant quality markers in Chinese patent medicine, J. Ethnopharmacol. 287 (2022) 114964. https://doi.org/10.1016/j.jep.2021.114964.

[135]

Z.P. Gao, X. Zhang, Research progress on ferulic acid, Chin. J. Mod. Med. 22 (2020) 138-147. https://doi.org/10.13313/j.issn.1673-4890.20190311005.

[136]

K. Zduńska, A. Dana, A. Kolodziejczak, et al., Antioxidant properties of ferulic acid and its possible application, Skin Pharmacol. Physiol. 31 (2018) 332-336. https://doi.org/10.1159/000491755.

[137]

A. Bumrungpert, S. Lilitchan, S. Tuntipopipat, et al., Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial, Nutrients. 10 (2018) 713. https://doi.org/10.3390/nu10060713.

[138]

N.K.S. Tran, T.A. Trinh, J. Pyo, et al., Neuroprotective potential of pyranocoumarins from Angelica gigas nakai on glutamate-induced hippocampal cell death, Antioxidants (Basel). 12 (2023) 1651. https://doi.org/10.3390/antiox12081651.

[139]

S.E. Lee, J.H. Kim, C. Lim, et al., Neuroprotective effect of Angelica gigas root in a mouse model of ischemic brain injury through mapk signaling pathway regulation, Chin. Med. 15 (2020) 101. https://doi.org/10.1186/s13020-020-00383-1.

[140]

J. Xu, P. Zhao, W. Pan, et al., Stabilised pathway and its anti-oxygen/glucose deprived activity about ligustilide, as a pharmacodynamic marker for Angelica sinensis (Oliv) Diles or ligusticum chuanxiong Hort, Nat. Prod. Res. Null. (2024) 1-7. https://doi.org/10.1080/14786419.2024.2396467.

[141]

Q. Zhang, T. Yang, D. Li, et al., The synergistic effect of Angelica sinensis (Oliv.) Diels and Rehmannia glutinosa (Gaertn.) DC. on antioxidant activity and protective ability against cell injury, J. Food Biochem. 46 (2022) e14196. https://doi.org/10.1111/jfbc.14196.

[142]

Q. Xie, L. Zhang, L. Xie, et al., Z-Ligustilide: a review of its pharmacokinetics and pharmacology, Phytother. Res. 34 (2020) 1966-1991. https://doi.org/10.1002/ptr.6662.

[143]

L. Han, D.L. Liu, Q.K. Zeng, et al., The neuroprotective effects and probable mechanisms of ligustilide and its degradative products on intracerebral hemorrhage in mice, Int. Immunopharmacol. 63 (2018) 43-57. https://doi.org/10.1016/j.intimp.2018.06.045.

[144]

K. Chi, R.H. Fu, Y.C. Huang, et al., Therapeutic effect of ligustilide-stimulated adipose-derived stem cells in a mouse thromboembolic stroke model, Cell Transplant. 25 (2016) 899-912. https://doi.org/10.3727/096368916x690539.

[145]

K. Sasaki, N. Iwata, F. Ferdousi, et al., Antidepressant-like effect of ferulic acid via promotion of energy metabolism activity, Mol. Nutr. Food Res. 63 (2019) e1900327. https://doi.org/10.1002/mnfr.201900327.

Food Science and Human Wellness
Article number: 9250498
Cite this article:
Zhang X, Fu L, Zhang R, et al. In-depth exploration of bioactive constituents, biosynthetic pathways, and pharmacological mechanisms of Angelica sinensis: implications for therapeutic development. Food Science and Human Wellness, 2025, 14(2): 9250498. https://doi.org/10.26599/FSHW.2025.9250498
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return