AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Research Roadmap of Service Ecosystems: A Crowd Intelligence Perspective

Xiao Xue1( )Guanding Li1Deyu Zhou2Yepeng Zhang1Lu Zhang1Yang Zhao3Zhiyong Feng1Lizhen Cui2,4Zhangbing Zhou5Xiao Sun6Xudong Lu2,4Shizhan Chen1
College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
School of Software, Shandong University, Jinan 250101, China
China Center for Internet Economy Research (CCIE), Central University of Finance and Economics, Beijing 100081, China
School of Software and Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
School of Information Engineering, China University of Geosciences, Beijing 100083, China
National Engineering Laboratory for E-Commerce Technology (NELECT), Department of Automation, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

With the mutual interaction and dependence of several intelligent services, a crowd intelligence service network has been formed, and a service ecosystem has gradually emerged. Such a development produces an ever-increasing effect on our lives and the functioning of the whole society. These facts call for research on these phenomena with a new theory or perspective, including what a smart society looks like, how it functions and evolves, and where its boundaries and challenges are. However, the research on service ecosystems is distributed in many disciplines and fields, including computer science, artificial intelligence, complex theory, social network, biological ecosystem, and network economics, and there is still no unified research framework. The researchers always have a restricted view of the research process. Under this context, this paper summarizes the research status and future developments of service ecosystems, including their conceptual origin, evolutionary logic, research topic and scale, challenges, and opportunities. We hope to provide a roadmap for the research in this field and promote sound development.

References

[1]

N. McKeown, Software-defined networking, INFOCOM Keynote Talk, vol. 17, no. 2, pp. 30–32, 2009.

[2]
B. Lantz, B. Heller, and N. McKeown, A network in a laptop: Rapid prototyping for software-defined networks, in Proc. 9th ACM SIGCOMM Workshop Hot Topics in Networks, Monterey, CA, USA, 2010, pp. 1–6.
[3]

H. Mei, Understanding “software-defined” from an OS perspective: Technical challenges and research issues, Sci. China Inf. Sci., vol. 60, no. 12, pp. 271–273, 2017.

[4]

I. Foster, Service-oriented science, Science, vol. 308, no. 5723, pp. 814–817, 2005.

[5]

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, Service-oriented computing: A research roadmap, Int. J. Coop. Inf. Syst., vol. 17, no. 2, pp. 223–255, 2008.

[6]

D. Bhamare, R. Jain, M. Samaka, and A. Erbad, A survey on service function chaining, J. Netw. Comput. Appl., vol. 75, pp. 138–155, 2016.

[7]

J. H. Lee, R. Phaal, and S. H. Lee, An integrated service-device-technology roadmap for smart city development, Technol. Forecast. Soc. Chang., vol. 80, no. 2, pp. 286–306, 2013.

[8]

C. Villalba and F. Zambonelli, Towards nature-inspired pervasive service ecosystems: Concepts and simulation experiences, J. Netw. Comput. Appl., vol. 34, no. 2, pp. 589–602, 2011.

[9]

M. Weiser, Ubiquitous computing, Computer, vol. 26, no. 10, pp. 71–72, 1993.

[10]

G. Bell and P. Dourish, Yesterday’s tomorrows: Notes on ubiquitous computing’s dominant vision, Pers. Ubiquitous Comput., vol. 11, no. 2, pp. 133–143, 2007.

[11]

F. -Y. Wang, The emergence of intelligent enterprises: From CPS to CPSS, IEEE Intell. Syst., vol. 25, no. 4, pp. 85–88, 2010.

[12]

Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, Cyber-physical-social systems: A state-of-the-srt survey, challenges and opportunities, IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 389–425, 2019.

[13]
X. Xue, Y. -D. Guo, S. -Z. Chen, and S. -F. Wang, Analysis and controlling of manufacturing service ecosystem: A research framework based on the parallel system theory, IEEE Trans. Serv. Comput., doi: 10.1109/TSC.2019.2917445.
[14]

K. Manikas and K. M. Hansen, Software ecosystems–a systematic literature review, J. Syst. Softw., vol. 86, no. 5, pp. 1294–1306, 2013.

[15]
A. Corallo, G. Passiante, and A. Prencipe, The Digital Business Ecosystem. Northampton, MA, USA: Edward Elgar Publishing, 2007.
[16]

A. Abellá-García, M. O. De-Urbina-Criado, and C. De-Pablos-Heredero, The ecosystem of services around smart cities: An exploratory analysis, Procedia Comput. Sci., vol. 64, pp. 1075–1080, 2015.

[17]
M. Ford, Rise of the Robots: Technology and the Threat of a Jobless Future. New York, NY, USA: Basic Books, 2015.
[18]
A. Paulin, Technological ecosystems’ role in preventing neo-feudalism in smart-city informatization, in Proc. 25th Int. Conf. Companion on World Wide Web (WWW), Montreal, Canada, 2016, pp. 333–337.
[19]
J. Thornhill, The big data revolution can revive the planned economy, Financial Times, https://www.ft.com/content/6250e4ec-8e68-11e7-9084-d0c17942ba93, 2017.
[20]

J. F. Moore, Predators and prey: A new ecology of competition, Harv. Bus. Rev., vol. 71, no. 3, pp. 75–86, 1999.

[21]

S. L. Vargo and R. F. Lusch, Evolving to a new dominant logic for marketing, J. Mark., vol. 68, no. 1, pp. 1–17, 2004.

[22]

S. L. Vargo and R. F. Lusch, Service-dominant logic: Continuing the evolution, J. Acad. Mark. Sci., vol. 36, no. 2, pp. 1–10, 2008.

[23]
D. G. Messerschmitt and C. Szyperski, Software Ecosystem: Understanding an Indispensable Technology and Industry. Cambridge, MA, USA: MIT Press Books, 2003.
[24]
M. Peltoniemi and E. Vuori, Business ecosystem as the new approach to complex adaptive business environments, presented at Frontiers of e-Business Research 2004 (FeBR 2004), Tampere, Finland, 2004.
[25]
M. Fowler, and J. Lewis, Microservices, http://martinfowler.com/articles/microservices. html, 2014.
[26]
S. L. Vargo, P. P. Maglio, and M. A. Akaka, On value and value co-creation: A service systems and service logic perspective, Eur. Manag. J., vol. 26, no. 3, pp. 145–152, 2008.
[27]
J. M. Smith, Evolution and the Theory of Games. Cambridge, UK: Cambridge University Press, 1982.
[28]

M. T. Hannan and J. Freeman, The population ecology of organizations, Am. J. Sociol., vol. 82, no. 5, pp. 929–964, 1977.

[29]

S. L. Vargo and R. F. Lusch, Institutions and axioms: An extension and update of service-dominant logic, J. Acad. Mark. Sci., vol. 44, no. 1, pp. 5–23, 2016.

[30]

M. A. Akaka, S. L. Vargo, and R. F. Lusch, The complexity of context: A service ecosystems approach for international marketing, J. Int. Market., vol. 21, no. 4, pp. 1–20, 2013.

[31]

M. M. Mars, J. L. Bronstein, and R. F. Lusch, The value of a metaphor: Organizations and ecosystems, Organ. Dyn., vol. 41, no. 4, pp. 271–280, 2012.

[32]

M. Kenney and J. Zysman, The rise of the platform economy, Issues Sci. Technol., vol. 32, no. 3, pp. 61–69, 2016.

[33]

K. Kim and J. Altmann, Platform provider roles in innovation in software service ecosystems, IEEE Trans. Eng. Manage., vol. 69, no. 4, pp. 930–939, 2020.

[34]
R. W. Schulte and Y. V. Natis, SSA research note SPA-401-068, Service oriented architectures, Part 1 & 2, Technical report, The Gartner Group, Stamford, CT, USA,1996.
[35]
R. Perrey and M. Lycett, Service-oriented architecture, in Proc. 2003 Symp. Appl. Internet Workshops (SAINTW), Orlando, FL, USA, 2003, pp. 116–119.
[36]

C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton, Reference model for service oriented architecture 1.0, OASIS Standard, vol. 12, no. S18, pp. 1–31, 2006.

[37]

K. Manikas, Revisiting software ecosystems research: A longitudinal literature study, J. Syst. Softw., vol. 117, pp. 84–103, 2016.

[38]
J. Yin, B. Zheng, S. Deng, Y. Wen, M. Xi, Z. Luo, and Y. Li, Crossover service: Deep convergence for pattern, ecosystem, environment, quality and value, in Proc. 2018 IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Vienna, Austria, 2018, pp. 1250–1257.
[39]

Z. Wu, J. Yin, S. Deng, J. Wu, Y. Li, and L. Chen, Modern service industry and crossover services: Development and trends in China, IEEE Trans. Serv. Comput., vol. 9, no. 5, pp. 664–671, 2016.

[40]

X. Xu, Q. Z. Sheng, L. -J. Zhang, Y. Fan, and S. Dustdar, From big data to big service, Computer, vol. 48, no. 7, pp. 80–83, 2015.

[41]

X. Xu, G. Motta, Z. Tu, H. Xu, Z. Wang, and X. Wang, A new paradigm of software service engineering in big data and big service era, Computing, vol. 100, no. 4, pp. 353–368, 2018.

[42]

S. -Z. Chen, Z. -Y. Feng, and H. Wang, Service relations and its application in services-oriented computing, Chin. J. Comput., vol. 33, no. 11, pp. 2068–2083, 2010.

[43]

S. Vandermerwe and J. Rada, Servitization of business: Adding value by adding services, Eur. Manag. J., vol. 6, no. 4, pp. 314–324, 1988.

[44]

F. Tao, L. Zhang, V. C. Venkatesh, Y. Luo, and Y. Cheng, Cloud manufacturing: A computing and service-oriented manufacturing model, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., vol. 225, no. 10, pp. 1969–1976, 2011.

[45]
A. Zimmermann, M. Pretz, G. Zimmermann, D. G. Firesmith, I. Petrov, and E. El-Sheikh, Towards service-oriented enterprise architectures for big data applications in the cloud, in Proc. 2013 17th IEEE Int. Enterp. Distrib. Object Comput. Conf. Workshops (EDOC), Vancouver, Canada, 2013, pp. 130–135.
[46]

M. R. Rasouli, An architecture for IoT-enabled intelligent process-aware cloud production platform: A case study in a networked cloud clinical laboratory, Int. J. Prod. Res., vol. 58, no. 12, pp. 3765–3780, 2020.

[47]

H. Bouzary and F. F. Chen, Service optimal selection and composition in cloud manufacturing: A comprehensive survey, Int. J. Adv. Manuf. Technol., vol. 97, pp. 795–808, 2018.

[48]
L. Zhang, H. Guo, F. Tao, Y. Luo, and N. Si, Flexible management of resource service composition in cloud manufacturing, in Proc. 2010 IEEE Int. Conf. Ind. Eng. Eng. Manage. (IEEM), Macao, China, 2010, pp. 2278–2282.
[49]

X. Xiao, S. Wang, L. Zhang, and C. Qin, Complexity analysis of manufacturing service ecosystem: A mapping-based computational experiment approach, Int. J. Prod. Res., vol. 57, no. 2, pp. 357–378, 2019.

[50]
A. Treadgold and J. Reynolds, Navigating the New Retail Landscape: A Guide for Business Leaders. Oxford, UK: Oxford University Press, 2016.
[51]

X. Xue, J. -J. Gao, S. Wu, S. -F. Wang, and Z. -Y. Feng, Value based analysis framework of crossover service: A case study of new retailer in China, IEEE Trans. Serv. Comput., vol. 15, no. 1, pp. 83–96, 2019.

[52]

S. Guo, C. Xu, X. Xue, Z. -Y. Feng, and S. -Z Chen, Research on trans-boundary convergence of different service chains in health service ecosystem, J. Med. Imaging Health Inform., vol. 10, no. 7, pp. 1734–1745, 2020.

[53]
Y. -F. Huang, P. Liu, Q. Pan, and J. -S. Lin, A doctor recommendation algorithm based on doctor performances and patient preferences, in Proc. 2012 Int. Conf. Wavelet Active Media Technol. Inf. Process. (ICWAMTIP), Chengdu, China, 2012, pp. 92–95.
[54]
H. Jiang and W. Xu, How to find your appropriate doctor: An integrated recommendation framework in big data context, in Proc. 2014 IEEE Symp. Comput. Intell. Healthc. e-Health (CICARE), Orlando, FL, USA, 2014, pp. 154–158.
[55]

C. W. Phang, C. -H. Tan, J. Sutanto, F. Magagna, and X. Lu, Leveraging O2O commerce for product promotion: An empirical investigation in mainland China, IEEE Trans. Eng. Manage., vol. 61, no. 4, pp. 623–632, 2014.

[56]

X. Xue, G. Gao, S. -F. Wang, and Z. -Y. Feng, Service bridge: Transboundary impact evaluation method of internet, IEEE Trans. Computat. Soc. Syst., vol. 5, no. 3, pp. 758–772, 2018.

[57]
C. -J. Lin, T. -T. Lee, C. Lin, Y. -C. Huang, and J. -M. Chiu, Establishing interaction specifications for online-to-offline (O2O) service systems, in Proc. Inst. Ind. Eng. Asian Conf., Taipei, China, 2013, pp. 1137–1145.
[58]

G. Lawton, Developing software online with platform-as-a-service technology, Computer, vol. 41, no. 6, pp. 13–15, 2008.

[59]

S. Bhardwaj, L. Jain, and S. Jain, Cloud computing: A study of infrastructure as a service (IAAS), Int. J. Inf. Technol. Web Eng., vol. 2, no. 1, pp. 60–63, 2010.

[60]

M. Turner, D. Budgen, and P. Brereton, Turning software into a service, Computer, vol. 36, no. 10, pp. 38–44, 2003.

[61]
S. Wu, S. Shen, X. Xu, Y. Chen, X. Zhou, D. Liu, X. Xue, and L. Qi, Popularity-aware and diverse web APIs recommendation based on correlation graph, IEEE Trans. Comput. Soc. Syst., doi: 10.1109/TCSS.2022.3168595.
[62]
L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, A correlation graph based approach for personalized and compatible web APIs recommendation in mobile APP development, IEEE Trans. Knowl. Data Eng., doi: 10.1109/TKDE.2022.3168611.
[63]
H. Wang, X. Chi, Z. Wang, X. Xu, and S. Chen, Extracting fine-grained service value features and distributions for accurate service recommendation, in Proc. 2017 IEEE Int. Conf. Web Serv. (ICWS), Honolulu, HI, USA, 2017, pp. 277–284.
[64]
M. Qian, Z. Liu, L. Yao, and W. Zhang, A coordination-theory driven approach for manufacturing Web services composition process, in Proc. 2018 IEEE Int. Conf. Ind. Eng. Eng. Manage. (IEEM), Singapore, 2008, pp. 2071–2076.
[65]

D. Peidro, J. Mula, R. Poler, and F. -C. Lario, Quantitative models for supply chain planning under uncertainty: A review, Int. J. Adv. Manuf. Technol., vol. 43, nos.3&4, pp. 400–420, 2009.

[66]

W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie, Applications of agent-based systems in intelligent manufacturing: An updated review, Adv. Eng. Inform., vol. 20, no. 4, pp. 415–431, 2006.

[67]
P. Wohlleben, The Secret Network of Nature: The Delicate Balance of All Living Things. London, UK: Vintage Digital, 2018.
[68]

F. S. Chapin III, M. S. Torn, and M. Tateno, Principles of ecosystem sustainability, Am. Nat., vol. 148, no. 6, pp. 1016–1037, 1996.

[69]
E. Handoyo, S. Jansen, and S. Brinkkemper, Software ecosystem modeling: The value chains, in Proc. Fifth Int. Conf. Manage. Emergent Digit. EcoSyst. (MEDES), Luxembourg, Luxembourg, 2013, pp. 17–24.
[70]
M. H. Sadi, J. Dai, and E. Yu, Designing software ecosystems: How to develop sustainable collaborations? in Proc. Int. Conf. Adv. Inform. Syst. Eng. (ICAIS), Stockholm, Sweden, 2015, pp. 161–173.
[71]

W. Vorraber, M. Mueller, S. Voessner, and W. Slany, Analyzing and managing complex software ecosystems: A framework to understand value in information systems, IEEE Software, vol. 36, no. 3, pp. 55–60, 2018.

[72]

M. Valverde and A. Flynn, More buzzwords than answers—To sidewalk labs in Toronto, Landsc. Archit. Front., vol. 6, no. 2, pp. 115–123, 2018.

[73]
I. Argyriou, Planning the smart city in China: Key policy issues and the case of dream town in the city of Hangzhou, in Proc. 25th Int. Conf. Comp. World Wide Web (WWW), Montreal, Canada, 2016, pp. 339–343.
[74]

P. Frow, J. R. McColl-Kennedy, T. Hilton, A. Davidson, A. Payne, and D. Brozovic, Value propositions: A service ecosystems perspective, Mark. Theory, vol. 14, no. 3, pp. 327–351, 2014.

[75]

Y. Zheng, L. Capra, O. Wolfson, and H. Yang, Urban computing: Concepts, methodologies, and applications, ACM Trans. Intell. Syst. Technol., vol. 5, no. 3, pp. 1–55, 2014.

[76]

H. Habibzadeh, C. Kaptan, T. Soyata, B. Kantarci, and A. Boukerche, Smart city system design: A comprehensive study of the application and data planes, ACM Comput. Surv., vol. 52, no. 2, pp. 1–38, 2019.

[77]

T. Shinbrot, C. Grebogi, J. A. Yorke, and E. Ott, Using small perturbations to control chaos, Nature, vol. 363, no. 6428, pp. 411–417, 1993.

[78]

X. Xue, S. Huangfu, L. Zhang, and S. Wang, Research on escaping the big-data traps in O2O service recommendation strategy, IEEE Trans. Big Data, vol. 7, no. 1, pp. 199–213, 2019.

[79]

D. Lazer, R. Kennedy, G. King, and A. Vespignani, Big data. The parable of Google flu: Traps in big data analysis, Science, vol. 343, no. 6176, pp. 1203–1205, 2014.

[80]
I. Prigogine and I. Stengers, The End of Certainty. New York, NY, USA: Free Press, 1997.
[81]

D. Nikolov, D. F. M. Oliveira, A. Flammini, and F. Menczer, Measuring online social bubbles, PeerJ Comput. Sci., vol. 1, p. e38, 2015.

[82]

S. Flaxman, S. Goel, and J. M. Rao, Filter bubbles, echo chambers, and online news consumption, Public Opin. Q., vol. 80, no. S1, pp. 298–320, 2016.

[83]
S. Hajian, F. Bonchi, and C. Castillo, Algorithmic bias: From discrimination discovery to fairness-aware data mining, in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., San Francisco, CA, USA, 2016, pp. 2125–2126.
[84]
D. Danks and A. J. London, Algorithmic bias in autonomous systems, in Proc. 26th Int. Joint Conf. Artif. Intell. (IJCAI), Melbourne, Australia, 2017, pp. 4691–4697.
[85]

R. Li, L. Dong, J. Zhang, X. Wang, W. -X. Wang, Z. Di, and H. E. Stanley, Simple spatial scaling rules behind complex cities, Nat. Commun., vol. 8, no. 1, p. 1841, 2017.

[86]

N. F. Johnson, R. Leahy, N. J. Restrepo, N. Velasquez, M. Zheng, P. Manrique, P. Devkota, and S. Wuchty, Hidden resilience and adaptive dynamics of the global online hate ecology, Nature, vol. 573, no. 7773, pp. 261–265, 2019.

[87]

P. Kristensen, The DPSIR framework, Natl. Environ. Res. Inst., vol. 10, pp. 1–10, 2004.

[88]
E. Schrödinger, What is Life?: With Mind and Matter and Autobiographical Sketches. Cambridge, UK: Cambridge University Press, 1992.
[89]

P. Skålén, J. Gummerus, C. V. Koskull, and P. R. Magnusson, Exploring value propositions and service innovation: A service-dominant logic study, J. Acad. Mark. Sci., vol. 43, no. 2, pp. 137–158, 2015.

[90]

M. A. Akaka and S. L. Vargo, Technology as an operant resource in service (eco)systems, Inf. Syst. E-Bus. Manag., vol. 12, no. 3, pp. 367–384, 2014.

[91]
J. Yuan, Y. Zheng, X. Xie, and G. Sun, Driving with knowledge from the physical world, in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., San Diego, CA, USA, 2011, pp. 316–324.
[92]

M. Balabanović and Y. Shoham, Fab: Content-based, collaborative recommendation, Commun. ACM, vol. 40, no. 3, pp. 66–72, 1997.

[93]
M. J. Pazzani and D. Billsus, Content-based recommendation systems, in The Adaptive Web: Methods and Strategies of Web Personalization, P. Brusilovsky, A. Kobsa, and W. Nejdl, eds. Berlin, Germany: Springer-Verlag, 2007, pp. 325–341.
[94]
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-based collaborative filtering recommendation algorithms, in Proc. 10th Int. Conf. World Wide Web (WWW), Hong Kong, China, 2001, pp. 285–295.
[95]
G. Cachon and C. Terwiesch, Matching Supply with Demand. New York, NY, USA: McGraw-Hill Publishing, 2008.
[96]
D. Renzel, M. Behrendt, R. Klamma, and M. Jarke, Requirements bazaar: Social requirements engineering for community-driven innovation, in Proc. 2013 21st IEEE Int. Requir. Eng. Conf. (RE), Rio de Janeiro, Brazil, 2013, pp. 326–327.
[97]

Y. Cheng, F. Tao, L. Zhang, and Y. Zuo, Supply-demand matching of manufacturing service in service-oriented manufacturing systems, Comput. Integr. Manuf. Syst., vol. 21, no. 7, pp. 1930–1940, 2015.

[98]

N. Nag and R. Jain, A navigational approach to health: Actionable guidance for improved quality of life, Computer, vol. 52, no. 4, pp. 12–20, 2019.

[99]

J. Zhao, J. Wu, X. Feng, H. Xiong, and K. Xu, Information propagation in online social networks: A tie-strength perspective, Knowl. Inf. Syst., vol. 32, no. 3, pp. 589–608, 2012.

[100]

F. Hacklin and M. W. Wallin, Convergence and interdisciplinarity in innovation management: A review, critique, and future directions, Serv. Ind. J., vol. 33, nos.7&8, pp. 774–788, 2013.

[101]

J. Peppard and A. Rylander, From value chain to value network: Insights for mobile operators, Eur. Manag. J., vol. 24, nos. 2&3, pp. 128–141, 2006.

[102]

L. Liu, M. Shen, and C. Li, The extension of the application domain of value engineering is a challenge to the theory and method system of value engineering, J. Beijing Inst. Mach., vol. 21, no. 1, pp. 60–63, 2006.

[103]
C. Alves, J. A. P. D. Oliveira, and S. Jansen, Software ecosystems governance: A systematic literature review and research agenda, in Proc. 19th Int. Conf. Enterp. Inf. Syst. (ICEIS), Porto, Portugal, 2017, pp. 215–226.
[104]
N. Haile and J. Altmann, Value creation in IT service platforms through two-sided network effects, in Proc. 9th Int. Conf. Econ. Grids, Cloud. Syst. Serv. (GECON), Berlin, Germany, 2012, pp. 139–153.
[105]
K. Touliou and E. Bekiaris, Building an inclusive ecosystem for developers and users: The role of value propositions, in Advances in Ergonomics Modeling, Usability & Special Populations, M. Soares, C. Falcão, and T. Z. Ahram, eds. Cham, Switzerland: Springer, 2017, pp. 339–346.
[106]

N. Haile and J. Altmann, Structural analysis of value creation in software service platforms, Electron. Mark., vol. 26, no. 2, pp. 129–142, 2016.

[107]

S. Panda, N. M. Modak, M. Basu, and S. K. Goyal, Channel coordination and profit distribution in a social responsible three-layer supply chain, Int. J. Prod. Econ., vol. 168, pp. 224–233, 2015.

[108]
V. Pant and E. Yu, Modeling strategic complementarity and synergistic value creation in competitive relationships, in Proc. 8th Int. Conf. Softw. Bus. (ICSOB), Essen, Germany, 2017, pp. 82–98.
[109]

P. Cong, L. Li, J. Zhou, K. Cao, T. Wei, M. Chen, and S. Hu, Developing user perceived value based pricing models for cloud markets, IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 12, pp. 2742–2756, 2018.

[110]
Y. Duan, K. Huang, A. Kattepur, and W. Du, Towards value-driven business modelling based on service brokerage, in Proc. Int. Conf. Service-Oriented Comput., Berlin, Germany, 2013, pp. 163–176.
[111]

H. Kil, S. -C. Oh, E. Elmacioglu, W. Nam, and D. Lee, Graph theoretic topological analysis of web service networks, World Wide Web, vol. 12, no. 3, pp. 321–343, 2009.

[112]
K. Huang, Y. Fan, and W. Tan, An empirical study of programmable web: A network analysis on a service-mashup system, in Proc. 2012 IEEE 19th Int. Conf. Web Serv. (ICWS), Honolulu, HI, USA, 2012, pp. 552–559.
[113]
R. S. Burt, Structural Holes: The Social Structure of Competition. Cambridge, MA, USA: Harvard University Press, 1995.
[114]
B. Bai, Y. Fan, W. Tan, and J. Zhang, SR-LDA: Mining effective representations for generating service ecosystem knowledge maps, in Proc. 2017 IEEE Int. Conf. Serv. Comput. (SCC), Honolulu, HI, USA, 2017, pp. 124–131.
[115]
W. Tan, J. Zhang, R. Madduri, I. Foster, D. D. Roure, and C. Goble, ServiceMap: Providing map and GPS assistance to service composition in bioinformatics, in Proc. 2011 IEEE Int. Conf. Serv. Comput. (SCC), Washington, DC, USA, 2011, pp. 632–639.
[116]

D. Achlioptas, R. M. D’Souza, and J. Spencer, Explosive percolation in random networks, Science, vol. 323, no. 5920, pp. 1453–1455, 2009.

[117]

T. Bohman, Emergence of connectivity in networks, Science, vol. 323, no. 5920, pp. 1438–1439, 2009.

[118]
X. Xue, Z. Chen, S. Wang, Z. Feng, Y. Duan, and Z. Zhou, Value entropy: A systematic evaluation model of service ecosystem evolution, IEEE Trans. Serv. Comput., doi: 10.1109/TSC.2020.3016660.
[119]
J. A. Schumpeter and U. Backhaus, The Theory of Economic Development, J. A. Schumpeter, ed. Boston, MA, USA: Springer, 2003, pp. 61–116.
[120]

B. Angelova and J. Zekiri, Measuring customer satisfaction with service quality using American customer satisfaction model (ACSI model), Int. J. Acad. Res. Bus. Soc. Sci., vol. 1, no. 3, pp. 232–258, 2011.

[121]

P. Belleflamme and M. Peitz, Platform competition and seller investment incentives, Eur. Econ. Rev., vol. 54, no. 8, pp. 1059–1076, 2010.

[122]

J. -C. Rochet and J. Tirole, Cooperation among competitors: Some economics of payment card associations, Rand J. Econ., vol. 33, no. 4, pp. 549–570, 2002.

[123]
R. Berk, Machine Learning Risk Assessments in Criminal Justice Settings. Cham, Switzerland: Springer, 2019.
[124]
H. E. Brady, Models of causal inference: Going beyond the Neyman-Rubin-Holland theory, presented at 2003 Midwest Political Science Association Annual Meeting, Chicago, IL, USA, 2003.
[125]

G. Sugihara, R. May, H. Ye, C. Hsieh, E. Deyle, M. Fogarty, and S. Munch, Detecting causality in complex ecosystems, Science, vol. 338, no. 6106, pp. 496–500, 2012.

[126]

P. Dowe, A counterfactual theory of prevention and ‘causation’ by omission, Australas. J. Philos., vol. 79, no. 2, pp. 216–226, 2001.

[127]

D. Gasking, Causation and recipes, Mind, vol. 64, no. 256, pp. 479–487, 1955.

[128]

H. Zenil, N. A. Kiani, A. A. Zea, and J. Tegnér, Causal deconvolution by algorithmic generative models, Nat. Mach. Intell., vol. 1, no. 1, pp. 58–66, 2019.

[129]

Z. Shen, W. -X. Wang, Y. Fan, Z. Di, and Y. -C. Lai, Reconstructing propagation networks with natural diversity and identifying hidden sources, Nat. Commun., vol. 5, no. 1, pp. 1–7, 2014.

[130]

J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant, Detecting influenza epidemics using search engine query data, Nature, vol. 457, no. 7232, pp. 1012–1014, 2008.

[131]
N. J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun, Where to find my next passenger, in Proc. 13th Int. Conf. Ubiquitous Comput. (UBIC), Beijing, China, 2011, pp. 109–118.
[132]

N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, T-finder: A recommender system for finding passengers and vacant taxis, IEEE Trans. Knowl. Data Eng., vol. 25, no. 10, pp. 2390–2403, 2012.

[133]
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT press, 2018.
[134]
M. L. Littman, Markov games as a framework for multi-agent reinforcement learning, in Proc. 11th Int. Conf. Mach. Learn., New Brunswick, NJ, USA, 1994, pp. 157–163.
[135]

A. Ghose, P. G. Ipeirotis, and B. Li, Examining the impact of ranking on consumer behavior and search engine revenue, Manage. Sci., vol. 60, no. 7, pp. 1632–1654, 2014.

[136]

P. Kollock, Social dilemmas: The anatomy of cooperation, Annu. Rev. Sociol., vol. 24, no. 1, pp. 183–214, 1998.

[137]

D. Heckerman, D. Geiger, and D. M. Chickering, Learning Bayesian networks: The combination of knowledge and statistical data, Mach. Learn., vol. 20, no. 3, pp. 197–243, 1995.

[138]

N. L. Zhang and D. Poole, Exploiting causal independence in Bayesian network inference, J. Artif. Intell. Res., vol. 5, pp. 301–328, 1996.

[139]
S. Davey, N. Gordon, I. Holland, M. Rutten, and J. Williams, Bayesian methods in the search for MH370, doi: 10.1007/978-981-10-0379-0.
[140]

J. F. Moore, The death of competition, Fortune, vol. 133, no. 7, pp. 90–92, 1996.

[141]

J. Korhonen, F. V. Malmborg, P. A. Strachan, and J. R. Ehrenfeld, Management and policy aspects of industrial ecology: An emerging research agenda, IEEE Eng. Manage. Rev., vol. 35, no. 3, p. 77, 2007.

[142]
R. Fischer, U. Scholten, and S. Scholten, A reference architecture for feedback-based control of service ecosystems, in Proc. 4th IEEE Int. Conf. Digit. Ecosyst. Technol. (DEST), Dubai, United Arab Emirates, 2010, pp. 1–6.
[143]
A. J. Quinn and B. B. Bederson, Human computation: A survey and taxonomy of a growing field, in Proc. SIGCHI Conf. Hum. Fact. Comput. Syst., Vancouver, Canada, 2011, pp. 1403–1412.
[144]

P. Michelucci and J. L. Dickinson, The power of crowds, Science, vol. 351, no. 6268, pp. 32–33, 2016.

[145]

H. Shirado and N. A. Christakis, Locally noisy autonomous agents improve global human coordination in network experiments, Nature, vol. 545, no. 7654, pp. 370–374, 2017.

[146]

G. Paolacci, J. Chandler, and P. G. Ipeirotis, Running experiments on Amazon mechanical turk, Judgm. Decis. Mak., vol. 5, no. 5, pp. 411–419, 2010.

[147]
S. Colbert, The Word–Wikiality, The Colbert report, vol. 31, https://en.wiktionary.org/wiki/wikiality, 2006.
[148]

D. Wen, Y. Yuan, and X. -R. Li, Artificial societies, computational experiments, and parallel systems: An investigation on a computational theory for complex socioeconomic systems, IEEE Trans. Serv. Comput., vol. 6, no. 2, pp. 177–185, 2013.

[149]

F. -Y. Wang, Toward a paradigm shift in social computing: The ACP approach, IEEE Intell. Syst., vol. 22, no. 5, pp. 65–67, 2007.

[150]

F. -Y. Wang, Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications, IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, 2010.

[151]
H. Oh and R. Jain, Detecting events of daily living using multimodal data, arXiv preprint arXiv: 1905.09402, 2019.
[152]

Z. X. Zhang and Y. Long, Aplication of wearable cameras in studying individual behaviors in built environments, Landsc. Archit. Front., vol. 7, no. 2, pp. 22–37, 2019.

[153]
A. Bandura, Social Learning Theory. Englewood Cliffs, NJ, USA: Prentice Hall, 1977.
[154]

X. Xue, S. Wang, L. Zhang, Z. Feng, and Y. Guo, Social learning evolution (SLE): Computational experiment-based modeling framework of social manufacturing, IEEE Trans. Ind. Inform., vol. 15, no. 6, pp. 3343–3355, 2018.

[155]

M. Cheng, Sharing economy: A review and agenda for future research, Int. J. Hosp. Manag., vol. 57, pp. 60–70, 2016.

[156]

G. Zervas, D. Proserpio, and J. W. Byers, The rise of the sharing economy: Estimating the impact of Airbnb on the hotel industry, J. Mark. Res., vol. 54, no. 5, pp. 687–705, 2017.

[157]

Y. Bar-Yam, From big data to important information, Complexity, vol. 21, no. S2, pp. 73–98, 2016.

International Journal of Crowd Science
Pages 195-222
Cite this article:
Xue X, Li G, Zhou D, et al. Research Roadmap of Service Ecosystems: A Crowd Intelligence Perspective. International Journal of Crowd Science, 2022, 6(4): 195-222. https://doi.org/10.26599/IJCS.2022.9100026

4346

Views

63

Downloads

38

Crossref

42

Scopus

Altmetrics

Received: 06 April 2022
Revised: 23 June 2022
Accepted: 27 June 2022
Published: 30 November 2022
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return