[1]
A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical Biosciences, vol. 28, nos. 3&4, pp. 221–236, 1976.
[2]
J. O. Kephart and S. R. White, Directed-graph epidemiological models of computer viruses, in Computation: The Micro and the Macro View, B. A. Huberman, ed. Singapore: World Scientific, 1992, pp. 71–102.
[14]
S. Song, Z. Zong, Y. Li, X. Liu, and Y. Yu, Reinforced epidemic control: Saving both lives and economy, arXiv preprint arXiv: 2008.01257, 2020.
[15]
R. Wan, X. Zhang, and R. Song, Multi-objective reinforcement learning for infectious disease control with application to COVID-19 spread, arXiv preprint arXiv: 2009.04607, 2020.
[17]
J. R. Birge, O. Candogan, and Y. Feng, Controlling epidemic spread: Reducing economic losses with targeted closures, http://dx.doi.org/10.2139/ssrn.3590621, 2020.
[18]
T. Andersson, A. Erlanson, D. Spiro, and R. Östling, Optimal trade-off between economic activity and health during an epidemic, arXiv preprint arXiv: 2005.07590, 2020.
[19]
D. W. Berger, K. F. Herkenhoff, and S. Mongey, An SEIR infectious disease model with testing and conditional quarantine, Tech. Rep. 597, National Bureau of Economic Research, New York, NY, USA, 2020.
[20]
P. D. Fajgelbaum, A. Khandelwal, W. Kim, C. Mantovani, and E. Schaal, Optimal lockdown in a commuting network, American Economic Review: Insights, vol. 3, no. 4, pp. 503–522, 2021.
[21]
Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, Epidemic spreading in real networks: An eigenvalue viewpoint, in Proc. 22nd International Symposium on Reliable Distributed Systems, Florence, Italy, 2003, pp. 25–34.
[22]
J. Piccini, F. Robledo, and P. Romero, Node-immunization strategies in a stochastic epidemic model, in Proc. First International Workshop on Machine Learning, Optimization, and Big Data, Sicily, Italy, 2015, pp. 222–232.
[24]
S. Nagaraja, Unlinking super-linkers: The topology of epidemic response (COVID-19), arXiv preprint arXiv: 2006.02241, 2020.
[27]
H. Tong, B. A. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, and D. H. Chau, On the vulnerability of large graphs, in Proc. 2010 IEEE International Conference on Data Mining, Sydney, Australia, 2010, pp. 1091–1096.
[29]
M. Ahmad, J. Tariq, M. Shabbir, and I. Khan, Spectral methods for immunization of large networks, arXiv preprint arXiv: 1711.00791, 2017.
[31]
H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos, Gelling, and melting, large graphs by edge manipulation, in Proc. 21st ACM International Conference on Information and Knowledge Management, Maui, HI, USA, 2012, pp. 245–254.
[32]
C. J. Kuhlman, G. Tuli, S. Swarup, M. V. Marathe, and S. S. Ravi, Blocking simple and complex contagion by edge removal, in Proc. 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 2013, pp. 399–408.
[34]
E. Gourdin, J. Omic, and P. V. Mieghem, Optimization of network protection against virus spread, in Proc. 2011 8th International Workshop on the Design of Reliable Communication Networks (DRCN), Krakow, Poland, 2011, pp. 86–93.
[36]
N. J. Watkins, C. Nowzari, V. M. Preciado, and G. J. Pappas, Optimal resource allocation for competing epidemics over arbitrary networks, in Proc. 2015 American Control Conference (ACC), Chicago, IL, USA, 2015, pp. 1381–1386.